BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 15162792)

  • 1. A model for initial DNA lesion recognition by NER and MMR based on local conformational flexibility.
    Isaacs RJ; Spielmann HP
    DNA Repair (Amst); 2004 May; 3(5):455-64. PubMed ID: 15162792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the DNA repair nucleases Rad13, Rad2 and Uve1 of Schizosaccharomyces pombe in mismatch correction.
    Kunz C; Fleck O
    J Mol Biol; 2001 Oct; 313(2):241-53. PubMed ID: 11800554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discrimination and versatility in mismatch repair.
    Hays JB; Hoffman PD; Wang H
    DNA Repair (Amst); 2005 Dec; 4(12):1463-74. PubMed ID: 16213799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional structural views of damaged-DNA recognition: T4 endonuclease V, E. coli Vsr protein, and human nucleotide excision repair factor XPA.
    Morikawa K; Shirakawa M
    Mutat Res; 2000 Aug; 460(3-4):257-75. PubMed ID: 10946233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eukaryotic nucleotide excision repair: from understanding mechanisms to influencing biology.
    Shuck SC; Short EA; Turchi JJ
    Cell Res; 2008 Jan; 18(1):64-72. PubMed ID: 18166981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing for DNA damage with β-hairpins: similarities in incision efficiencies of bulky DNA adducts by prokaryotic and human nucleotide excision repair systems in vitro.
    Liu Y; Reeves D; Kropachev K; Cai Y; Ding S; Kolbanovskiy M; Kolbanovskiy A; Bolton JL; Broyde S; Van Houten B; Geacintov NE
    DNA Repair (Amst); 2011 Jul; 10(7):684-96. PubMed ID: 21741328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poor base stacking at DNA lesions may initiate recognition by many repair proteins.
    Yang W
    DNA Repair (Amst); 2006 Jun; 5(6):654-66. PubMed ID: 16574501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lesion Sensing during Initial Binding by Yeast XPC/Rad4: Toward Predicting Resistance to Nucleotide Excision Repair.
    Mu H; Zhang Y; Geacintov NE; Broyde S
    Chem Res Toxicol; 2018 Nov; 31(11):1260-1268. PubMed ID: 30284444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of mismatch repair in transcription-coupled nucleotide excision repair.
    Kobayashi K; Karran P; Oda S; Yanaga K
    Hum Cell; 2005 Sep; 18(3):103-15. PubMed ID: 17022143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The efficiencies of damage recognition and excision correlate with duplex destabilization induced by acetylaminofluorene adducts in human nucleotide excision repair.
    Yeo JE; Khoo A; Fagbemi AF; Schärer OD
    Chem Res Toxicol; 2012 Nov; 25(11):2462-8. PubMed ID: 23088760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined mismatch and nucleotide excision repair defects in a human cell line: mismatch repair processes methylation but not UV- or ionizing radiation-induced DNA damage.
    O'Driscoll M; Martinelli S; Ciotta C; Karran P
    Carcinogenesis; 1999 May; 20(5):799-804. PubMed ID: 10334196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting DNA mismatch repair for radiosensitization.
    Berry SE; Kinsella TJ
    Semin Radiat Oncol; 2001 Oct; 11(4):300-15. PubMed ID: 11677655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA repair: models for damage and mismatch recognition.
    Rajski SR; Jackson BA; Barton JK
    Mutat Res; 2000 Jan; 447(1):49-72. PubMed ID: 10686306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Base Lesions and Mismatches Alter the Backbone Conformational Dynamics in DNA.
    Westwood MN; Ljunggren KD; Boyd B; Becker J; Dwyer TJ; Meints GA
    Biochemistry; 2021 Mar; 60(11):873-885. PubMed ID: 33689312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The eukaryotic nucleotide excision repair pathway.
    Costa RM; Chiganças V; Galhardo Rda S; Carvalho H; Menck CF
    Biochimie; 2003 Nov; 85(11):1083-99. PubMed ID: 14726015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of nucleotide-excision repair in msh2 pms1-independent mismatch repair.
    Fleck O; Lehmann E; Schär P; Kohli J
    Nat Genet; 1999 Mar; 21(3):314-7. PubMed ID: 10080187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stereoselectivity of human nucleotide excision repair promoted by defective hybridization.
    Hess MT; Naegeli H; Capobianco M
    J Biol Chem; 1998 Oct; 273(43):27867-72. PubMed ID: 9774397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recognition of nonhybridizing base pairs during nucleotide excision repair of DNA.
    Buschta-Hedayat N; Buterin T; Hess MT; Missura M; Naegeli H
    Proc Natl Acad Sci U S A; 1999 May; 96(11):6090-5. PubMed ID: 10339546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleotide excision repair efficiencies of bulky carcinogen-DNA adducts are governed by a balance between stabilizing and destabilizing interactions.
    Cai Y; Geacintov NE; Broyde S
    Biochemistry; 2012 Feb; 51(7):1486-99. PubMed ID: 22242833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleotide excision repair in higher eukaryotes: mechanism of primary damage recognition in global genome repair.
    Rechkunova NI; Lavrik OI
    Subcell Biochem; 2010; 50():251-77. PubMed ID: 20012586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.