BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 15163300)

  • 1. Genetically defined mouse models that mimic natural aspects of human prostate cancer development.
    Roy-Burman P; Wu H; Powell WC; Hagenkord J; Cohen MB
    Endocr Relat Cancer; 2004 Jun; 11(2):225-54. PubMed ID: 15163300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mouse strains for prostate tumorigenesis based on genes altered in human prostate cancer.
    Powell WC; Cardiff RD; Cohen MB; Miller GJ; Roy-Burman P
    Curr Drug Targets; 2003 Apr; 4(3):263-79. PubMed ID: 12643476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetically engineered murine models of prostate cancer: insights into mechanisms of tumorigenesis and potential utility.
    Abdulkadir SA; Kim J
    Future Oncol; 2005 Jun; 1(3):351-60. PubMed ID: 16556009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prostate pathology of genetically engineered mice: definitions and classification. The consensus report from the Bar Harbor meeting of the Mouse Models of Human Cancer Consortium Prostate Pathology Committee.
    Shappell SB; Thomas GV; Roberts RL; Herbert R; Ittmann MM; Rubin MA; Humphrey PA; Sundberg JP; Rozengurt N; Barrios R; Ward JM; Cardiff RD
    Cancer Res; 2004 Mar; 64(6):2270-305. PubMed ID: 15026373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Survey of genetically engineered mouse models for prostate cancer: analyzing the molecular basis of prostate cancer development, progression, and metastasis.
    Kasper S
    J Cell Biochem; 2005 Feb; 94(2):279-97. PubMed ID: 15565647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling human prostate cancer in genetically engineered mice.
    Wang F
    Prog Mol Biol Transl Sci; 2011; 100():1-49. PubMed ID: 21377623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metastatic prostate cancer in a transgenic mouse.
    Gingrich JR; Barrios RJ; Morton RA; Boyce BF; DeMayo FJ; Finegold MJ; Angelopoulou R; Rosen JM; Greenberg NM
    Cancer Res; 1996 Sep; 56(18):4096-102. PubMed ID: 8797572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined MYC Activation and Pten Loss Are Sufficient to Create Genomic Instability and Lethal Metastatic Prostate Cancer.
    Hubbard GK; Mutton LN; Khalili M; McMullin RP; Hicks JL; Bianchi-Frias D; Horn LA; Kulac I; Moubarek MS; Nelson PS; Yegnasubramanian S; De Marzo AM; Bieberich CJ
    Cancer Res; 2016 Jan; 76(2):283-92. PubMed ID: 26554830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer.
    Wang S; Gao J; Lei Q; Rozengurt N; Pritchard C; Jiao J; Thomas GV; Li G; Roy-Burman P; Nelson PS; Liu X; Wu H
    Cancer Cell; 2003 Sep; 4(3):209-21. PubMed ID: 14522255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Models of metastatic prostate cancer: a transgenic perspective.
    Winter SF; Cooper AB; Greenberg NM
    Prostate Cancer Prostatic Dis; 2003; 6(3):204-11. PubMed ID: 12970722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raf kinase inhibitor protein (RKIP) deficiency decreases latency of tumorigenesis and increases metastasis in a murine genetic model of prostate cancer.
    Escara-Wilke J; Keller JM; Ignatoski KM; Dai J; Shelley G; Mizokami A; Zhang J; Yeung ML; Yeung KC; Keller ET
    Prostate; 2015 Feb; 75(3):292-302. PubMed ID: 25327941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histopathological characteristics of a novel knock-in mouse prostate cancer model.
    Wu G; Wang D; Wang H; Yuan J; Xuan JW
    Braz J Med Biol Res; 2006 Jun; 39(6):759-65. PubMed ID: 16751981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autochthonous mouse models for prostate cancer: past, present and future.
    Huss WJ; Maddison LA; Greenberg NM
    Semin Cancer Biol; 2001 Jun; 11(3):245-60. PubMed ID: 11407949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Animal models of bone metastasis.
    Rosol TJ; Tannehill-Gregg SH; LeRoy BE; Mandl S; Contag CH
    Cancer; 2003 Feb; 97(3 Suppl):748-57. PubMed ID: 12548572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased expression of osteopontin contributes to the progression of prostate cancer.
    Khodavirdi AC; Song Z; Yang S; Zhong C; Wang S; Wu H; Pritchard C; Nelson PS; Roy-Burman P
    Cancer Res; 2006 Jan; 66(2):883-8. PubMed ID: 16424021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mouse models of prostate cancer.
    Sharma P; Schreiber-Agus N
    Oncogene; 1999 Sep; 18(38):5349-55. PubMed ID: 10498888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergy of p53 and Rb deficiency in a conditional mouse model for metastatic prostate cancer.
    Zhou Z; Flesken-Nikitin A; Corney DC; Wang W; Goodrich DW; Roy-Burman P; Nikitin AY
    Cancer Res; 2006 Aug; 66(16):7889-98. PubMed ID: 16912162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetically Engineered Mouse Models of Prostate Cancer in the Postgenomic Era.
    Arriaga JM; Abate-Shen C
    Cold Spring Harb Perspect Med; 2019 Feb; 9(2):. PubMed ID: 29661807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetically modified mice and their use in developing therapeutic strategies for prostate cancer.
    Kasper S; Smith JA
    J Urol; 2004 Jul; 172(1):12-9. PubMed ID: 15201729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model: A good alternative to study PCa progression and chemoprevention approaches.
    Kido LA; de Almeida Lamas C; Maróstica MR; Cagnon VHA
    Life Sci; 2019 Jan; 217():141-147. PubMed ID: 30528182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.