BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 15164059)

  • 1. Low electrical resistivity associated with plunging of the Nazca flat slab beneath Argentina.
    Booker JR; Favetto A; Pomposiello MC
    Nature; 2004 May; 429(6990):399-403. PubMed ID: 15164059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trench-parallel flow beneath the nazca plate from seismic anisotropy.
    Russo RM; Silver PG
    Science; 1994 Feb; 263(5150):1105-11. PubMed ID: 17831621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seismic detection of folded, subducted lithosphere at the core-mantle boundary.
    Hutko AR; Lay T; Garnero EJ; Revenaugh J
    Nature; 2006 May; 441(7091):333-6. PubMed ID: 16710418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges.
    Yogodzinski GM; Lees JM; Churikova TG; Dorendorf F; Wöerner G; Volynets ON
    Nature; 2001 Jan; 409(6819):500-4. PubMed ID: 11206543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seismic evidence for catastrophic slab loss beneath Kamchatka.
    Levin V; Shapiro N; Park J; Ritzwoller M
    Nature; 2002 Aug; 418(6899):763-7. PubMed ID: 12181563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Southward propagation of Nazca subduction along the Andes.
    Chen YW; Wu J; Suppe J
    Nature; 2019 Jan; 565(7740):441-447. PubMed ID: 30675041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subduction and collision processes in the Central Andes constrained by converted seismic phases.
    Yuan X; Sobolev SV; Kind R; Oncken O; Bock G; Asch G; Schurr B; Graeber F; Rudloff A; Hanka W; Wylegalla K; Tibi R; Haberland C; Rietbrock A; Giese P; Wigger P; Röwer P; Zandt G; Beck S; Wallace T; Pardo M; Comte D
    Nature; 2000 Dec 21-28; 408(6815):958-61. PubMed ID: 11140679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence of lower-mantle slab penetration phases in plate motions.
    Goes S; Capitanio FA; Morra G
    Nature; 2008 Feb; 451(7181):981-4. PubMed ID: 18288192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electromagnetic detection of a 410-km-deep melt layer in the southwestern United States.
    Toffelmier DA; Tyburczy JA
    Nature; 2007 Jun; 447(7147):991-4. PubMed ID: 17581582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mantle wedge control on back-arc crustal accretion.
    Martinez F; Taylor B
    Nature; 2002 Mar; 416(6879):417-20. PubMed ID: 11919628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstructing Farallon plate subduction beneath North America back to the Late Cretaceous.
    Liu L; Spasojevic S; Gurnis M
    Science; 2008 Nov; 322(5903):934-8. PubMed ID: 18988850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. South-American plate advance and forced Andean trench retreat as drivers for transient flat subduction episodes.
    Schepers G; van Hinsbergen DJJ; Spakman W; Kosters ME; Boschman LM; McQuarrie N
    Nat Commun; 2017 May; 8():15249. PubMed ID: 28508893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathway from subducting slab to surface for melt and fluids beneath Mount Rainier.
    McGary RS; Evans RL; Wannamaker PE; Elsenbeck J; Rondenay S
    Nature; 2014 Jul; 511(7509):338-40. PubMed ID: 25030172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melt production beneath Mt. Shasta from boron data in primitive melt inclusions.
    Rose EF; Shimizu N; Layne GD; Grove TL
    Science; 2001 Jul; 293(5528):281-3. PubMed ID: 11452119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geophysical evidence from the MELT area for compositional controls on oceanic plates.
    Evans RL; Hirth G; Baba K; Forsyth D; Chave A; Mackie R
    Nature; 2005 Sep; 437(7056):249-52. PubMed ID: 16148932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for a large-scale remnant of subducted lithosphere beneath Fiji.
    Chen WP; Brudzinski MR
    Science; 2001 Jun; 292(5526):2475-9. PubMed ID: 11431564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subduction of fracture zones controls mantle melting and geochemical signature above slabs.
    Manea VC; Leeman WP; Gerya T; Manea M; Zhu G
    Nat Commun; 2014 Oct; 5():5095. PubMed ID: 25342158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slab to back-arc to arc: Fluid and melt pathways through the mantle wedge beneath the Lesser Antilles.
    Hicks SP; Bie L; Rychert CA; Harmon N; Goes S; Rietbrock A; Wei SS; Collier JS; Henstock TJ; Lynch L; Prytulak J; Macpherson CG; Schlaphorst D; Wilkinson JJ; Blundy JD; Cooper GF; Davy RG; Kendall JM;
    Sci Adv; 2023 Feb; 9(5):eadd2143. PubMed ID: 36724230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinematic variables and water transport control the formation and location of arc volcanoes.
    Grove TL; Till CB; Lev E; Chatterjee N; Médard E
    Nature; 2009 Jun; 459(7247):694-7. PubMed ID: 19494913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molybdenum isotopes unmask slab dehydration and melting beneath the Mariana arc.
    Li HY; Zhao RP; Li J; Tamura Y; Spencer C; Stern RJ; Ryan JG; Xu YG
    Nat Commun; 2021 Oct; 12(1):6015. PubMed ID: 34650082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.