These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 15164284)

  • 1. Litter decomposition in moist acidic and non-acidic tundra with different glacial histories.
    Hobbie SE; Gough L
    Oecologia; 2004 Jun; 140(1):113-24. PubMed ID: 15164284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shrub encroachment in Arctic tundra: Betula nana effects on above- and belowground litter decomposition.
    McLaren JR; Buckeridge KM; van de Weg MJ; Shaver GR; Schimel JP; Gough L
    Ecology; 2017 May; 98(5):1361-1376. PubMed ID: 28263375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra.
    Christiansen CT; Haugwitz MS; Priemé A; Nielsen CS; Elberling B; Michelsen A; Grogan P; Blok D
    Glob Chang Biol; 2017 Jan; 23(1):406-420. PubMed ID: 27197084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of arctic shrub expansion on biophysical vs. biogeochemical drivers of litter decomposition.
    DeMarco J; Mack MC; Bret-Harte MS
    Ecology; 2014 Jul; 95(7):1861-75. PubMed ID: 25163119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Greater deciduous shrub abundance extends tundra peak season and increases modeled net CO2 uptake.
    Sweet SK; Griffin KL; Steltzer H; Gough L; Boelman NT
    Glob Chang Biol; 2015 Jun; 21(6):2394-409. PubMed ID: 25556338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring drivers of litter decomposition in a greening Arctic: results from a transplant experiment across a treeline.
    Parker TC; Sanderman J; Holden RD; Blume-Werry G; Sjögersten S; Large D; Castro-Díaz M; Street LE; Subke JA; Wookey PA
    Ecology; 2018 Oct; 99(10):2284-2294. PubMed ID: 29981157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Above- and belowground responses of Arctic tundra ecosystems to altered soil nutrients and mammalian herbivory.
    Gough L; Moore JC; Shaver GR; Simpson RT; Johnson DR
    Ecology; 2012 Jul; 93(7):1683-94. PubMed ID: 22919914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrogen supply differentially affects litter decomposition rates and nitrogen dynamics of sub-arctic bog species.
    Aerts R; van Logtestijn RS; Karlsson PS
    Oecologia; 2006 Jan; 146(4):652-8. PubMed ID: 16167147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Foliar and soil nutrients in tundra on glacial landscapes of contrasting ages in northern Alaska.
    Hobbie SE; Gough L
    Oecologia; 2002 May; 131(3):453-462. PubMed ID: 28547718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arctic shrub growth trajectories differ across soil moisture levels.
    Ackerman D; Griffin D; Hobbie SE; Finlay JC
    Glob Chang Biol; 2017 Oct; 23(10):4294-4302. PubMed ID: 28267242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NDVI changes in the Arctic: Functional significance in the moist acidic tundra of Northern Alaska.
    Jespersen RG; Anderson-Smith M; Sullivan PF; Dial RJ; Welker JM
    PLoS One; 2023; 18(4):e0285030. PubMed ID: 37115765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecosystem nitrogen fixation throughout the snow-free period in subarctic tundra: effects of willow and birch litter addition and warming.
    Rousk K; Michelsen A
    Glob Chang Biol; 2017 Apr; 23(4):1552-1563. PubMed ID: 27391280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential ecophysiological response of deciduous shrubs and a graminoid to long-term experimental snow reductions and additions in moist acidic tundra, Northern Alaska.
    Pattison RR; Welker JM
    Oecologia; 2014 Feb; 174(2):339-50. PubMed ID: 24052332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Greater shrub dominance alters breeding habitat and food resources for migratory songbirds in Alaskan arctic tundra.
    Boelman NT; Gough L; Wingfield J; Goetz S; Asmus A; Chmura HE; Krause JS; Perez JH; Sweet SK; Guay KC
    Glob Chang Biol; 2015 Apr; 21(4):1508-20. PubMed ID: 25294359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term increase in snow depth leads to compositional changes in arctic ectomycorrhizal fungal communities.
    Morgado LN; Semenova TA; Welker JM; Walker MD; Smets E; Geml J
    Glob Chang Biol; 2016 Sep; 22(9):3080-96. PubMed ID: 27004610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term deepened snow promotes tundra evergreen shrub growth and summertime ecosystem net CO
    Christiansen CT; Lafreniére MJ; Henry GHR; Grogan P
    Glob Chang Biol; 2018 Aug; 24(8):3508-3525. PubMed ID: 29411950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline.
    Parker TC; Subke JA; Wookey PA
    Glob Chang Biol; 2015 May; 21(5):2070-81. PubMed ID: 25367088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial community composition and function across an arctic tundra landscape.
    Zak DR; Kling GW
    Ecology; 2006 Jul; 87(7):1659-70. PubMed ID: 16922317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Landscape patterns of litter decomposition in alpine tundra.
    O'Lear HA; Seastedt TR
    Oecologia; 1994 Sep; 99(1-2):95-101. PubMed ID: 28313953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Moss Mediates the Influence of Shrub Species on Soil Properties and Processes in Alpine Tundra.
    Bueno CG; Williamson SN; Barrio IC; Helgadóttir Á; HiK DS
    PLoS One; 2016; 11(10):e0164143. PubMed ID: 27760156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.