These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
400 related articles for article (PubMed ID: 15164284)
1. Litter decomposition in moist acidic and non-acidic tundra with different glacial histories. Hobbie SE; Gough L Oecologia; 2004 Jun; 140(1):113-24. PubMed ID: 15164284 [TBL] [Abstract][Full Text] [Related]
2. Shrub encroachment in Arctic tundra: Betula nana effects on above- and belowground litter decomposition. McLaren JR; Buckeridge KM; van de Weg MJ; Shaver GR; Schimel JP; Gough L Ecology; 2017 May; 98(5):1361-1376. PubMed ID: 28263375 [TBL] [Abstract][Full Text] [Related]
3. Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra. Christiansen CT; Haugwitz MS; Priemé A; Nielsen CS; Elberling B; Michelsen A; Grogan P; Blok D Glob Chang Biol; 2017 Jan; 23(1):406-420. PubMed ID: 27197084 [TBL] [Abstract][Full Text] [Related]
4. Effects of arctic shrub expansion on biophysical vs. biogeochemical drivers of litter decomposition. DeMarco J; Mack MC; Bret-Harte MS Ecology; 2014 Jul; 95(7):1861-75. PubMed ID: 25163119 [TBL] [Abstract][Full Text] [Related]
5. Greater deciduous shrub abundance extends tundra peak season and increases modeled net CO2 uptake. Sweet SK; Griffin KL; Steltzer H; Gough L; Boelman NT Glob Chang Biol; 2015 Jun; 21(6):2394-409. PubMed ID: 25556338 [TBL] [Abstract][Full Text] [Related]
6. Exploring drivers of litter decomposition in a greening Arctic: results from a transplant experiment across a treeline. Parker TC; Sanderman J; Holden RD; Blume-Werry G; Sjögersten S; Large D; Castro-Díaz M; Street LE; Subke JA; Wookey PA Ecology; 2018 Oct; 99(10):2284-2294. PubMed ID: 29981157 [TBL] [Abstract][Full Text] [Related]
7. Above- and belowground responses of Arctic tundra ecosystems to altered soil nutrients and mammalian herbivory. Gough L; Moore JC; Shaver GR; Simpson RT; Johnson DR Ecology; 2012 Jul; 93(7):1683-94. PubMed ID: 22919914 [TBL] [Abstract][Full Text] [Related]
8. Nitrogen supply differentially affects litter decomposition rates and nitrogen dynamics of sub-arctic bog species. Aerts R; van Logtestijn RS; Karlsson PS Oecologia; 2006 Jan; 146(4):652-8. PubMed ID: 16167147 [TBL] [Abstract][Full Text] [Related]
9. Foliar and soil nutrients in tundra on glacial landscapes of contrasting ages in northern Alaska. Hobbie SE; Gough L Oecologia; 2002 May; 131(3):453-462. PubMed ID: 28547718 [TBL] [Abstract][Full Text] [Related]
11. NDVI changes in the Arctic: Functional significance in the moist acidic tundra of Northern Alaska. Jespersen RG; Anderson-Smith M; Sullivan PF; Dial RJ; Welker JM PLoS One; 2023; 18(4):e0285030. PubMed ID: 37115765 [TBL] [Abstract][Full Text] [Related]
12. Ecosystem nitrogen fixation throughout the snow-free period in subarctic tundra: effects of willow and birch litter addition and warming. Rousk K; Michelsen A Glob Chang Biol; 2017 Apr; 23(4):1552-1563. PubMed ID: 27391280 [TBL] [Abstract][Full Text] [Related]
13. Differential ecophysiological response of deciduous shrubs and a graminoid to long-term experimental snow reductions and additions in moist acidic tundra, Northern Alaska. Pattison RR; Welker JM Oecologia; 2014 Feb; 174(2):339-50. PubMed ID: 24052332 [TBL] [Abstract][Full Text] [Related]