These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 15164337)

  • 1. Ultrastructure of the osteocyte process and its pericellular matrix.
    You LD; Weinbaum S; Cowin SC; Schaffler MB
    Anat Rec A Discov Mol Cell Evol Biol; 2004 Jun; 278(2):505-13. PubMed ID: 15164337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanotransduction and strain amplification in osteocyte cell processes.
    Han Y; Cowin SC; Schaffler MB; Weinbaum S
    Proc Natl Acad Sci U S A; 2004 Nov; 101(47):16689-94. PubMed ID: 15539460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix.
    You L; Cowin SC; Schaffler MB; Weinbaum S
    J Biomech; 2001 Nov; 34(11):1375-86. PubMed ID: 11672712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microscale fluid flow analysis in a human osteocyte canaliculus using a realistic high-resolution image-based three-dimensional model.
    Kamioka H; Kameo Y; Imai Y; Bakker AD; Bacabac RG; Yamada N; Takaoka A; Yamashiro T; Adachi T; Klein-Nulend J
    Integr Biol (Camb); 2012 Oct; 4(10):1198-206. PubMed ID: 22858651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attachment of osteocyte cell processes to the bone matrix.
    McNamara LM; Majeska RJ; Weinbaum S; Friedrich V; Schaffler MB
    Anat Rec (Hoboken); 2009 Mar; 292(3):355-63. PubMed ID: 19248169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational framework for analyzing flow-induced strain on osteocyte as modulated by microenvironment.
    Kameo Y; Ozasa M; Adachi T
    J Mech Behav Biomed Mater; 2022 Feb; 126():105027. PubMed ID: 34920322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteocyte calcium signaling response to bone matrix deformation.
    Adachi T; Aonuma Y; Ito S; Tanaka M; Hojo M; Takano-Yamamoto T; Kamioka H
    J Biomech; 2009 Nov; 42(15):2507-12. PubMed ID: 19665124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses.
    Weinbaum S; Cowin SC; Zeng Y
    J Biomech; 1994 Mar; 27(3):339-60. PubMed ID: 8051194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular Matrix Elasticity Regulates Osteocyte Gap Junction Elongation: Involvement of Paxillin in Intracellular Signal Transduction.
    Zhang D; Zhou C; Wang Q; Cai L; Du W; Li X; Zhou X; Xie J
    Cell Physiol Biochem; 2018; 51(3):1013-1026. PubMed ID: 30476913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchrotron X-ray phase nano-tomography-based analysis of the lacunar-canalicular network morphology and its relation to the strains experienced by osteocytes in situ as predicted by case-specific finite element analysis.
    Varga P; Hesse B; Langer M; Schrof S; Männicke N; Suhonen H; Pacureanu A; Pahr D; Peyrin F; Raum K
    Biomech Model Mechanobiol; 2015 Apr; 14(2):267-82. PubMed ID: 25011566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluid flow in the osteocyte mechanical environment: a fluid-structure interaction approach.
    Verbruggen SW; Vaughan TJ; McNamara LM
    Biomech Model Mechanobiol; 2014 Jan; 13(1):85-97. PubMed ID: 23567965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osteocyte morphology in fibula and calvaria --- is there a role for mechanosensing?
    Vatsa A; Breuls RG; Semeins CM; Salmon PL; Smit TH; Klein-Nulend J
    Bone; 2008 Sep; 43(3):452-8. PubMed ID: 18625577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution image-based simulation reveals membrane strain concentration on osteocyte processes caused by tethering elements.
    Yokoyama Y; Kameo Y; Kamioka H; Adachi T
    Biomech Model Mechanobiol; 2021 Dec; 20(6):2353-2360. PubMed ID: 34471950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Mechanosensitivity of osteocytes].
    Kamioka H; Yamashiro T
    Clin Calcium; 2012 May; 22(5):697-704. PubMed ID: 22549194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative analysis of diffusive and stress induced nutrient transport efficiency in the lacunar-canalicular system of osteons.
    Petrov N; Pollack SR
    Biorheology; 2003; 40(1-3):347-53. PubMed ID: 12454425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single molecule force measurements of perlecan/HSPG2: A key component of the osteocyte pericellular matrix.
    Wijeratne SS; Martinez JR; Grindel BJ; Frey EW; Li J; Wang L; Farach-Carson MC; Kiang CH
    Matrix Biol; 2016 Mar; 50():27-38. PubMed ID: 26546708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MT1-MMP modulates the mechanosensitivity of osteocytes.
    Kulkarni RN; Bakker AD; Gruber EV; Chae TD; Veldkamp JB; Klein-Nulend J; Everts V
    Biochem Biophys Res Commun; 2012 Jan; 417(2):824-9. PubMed ID: 22202174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decreased pericellular matrix production and selection for enhanced cell membrane repair may impair osteocyte responses to mechanical loading in the aging skeleton.
    Hagan ML; Yu K; Zhu J; Vinson BN; Roberts RL; Montesinos Cartagena M; Johnson MH; Wang L; Isales CM; Hamrick MW; McNeil PL; McGee-Lawrence ME
    Aging Cell; 2020 Jan; 19(1):e13056. PubMed ID: 31743583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteocyte lacunae tissue strain in cortical bone.
    Nicolella DP; Moravits DE; Gale AM; Bonewald LF; Lankford J
    J Biomech; 2006; 39(9):1735-43. PubMed ID: 15993413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fiber matrix model for fluid flow and streaming potentials in the canaliculi of an osteon.
    Zeng Y; Cowin SC; Weinbaum S
    Ann Biomed Eng; 1994; 22(3):280-92. PubMed ID: 7978549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.