These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 15165467)

  • 1. Evaluation of smooth muscle cell response using two types of porous polylactide scaffolds with differing pore topography.
    McGlohorn JB; Holder WD; Grimes LW; Thomas CB; Burg KJ
    Tissue Eng; 2004; 10(3-4):505-14. PubMed ID: 15165467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic culturing of smooth muscle cells in tubular poly(trimethylene carbonate) scaffolds for vascular tissue engineering.
    Song Y; Wennink JW; Kamphuis MM; Sterk LM; Vermes I; Poot AA; Feijen J; Grijpma DW
    Tissue Eng Part A; 2011 Feb; 17(3-4):381-7. PubMed ID: 20807005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of cellular carriers for use in injectable tissue-engineering composites.
    McGlohorn JB; Grimes LW; Webster SS; Burg KJ
    J Biomed Mater Res A; 2003 Sep; 66(3):441-9. PubMed ID: 12918025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermally produced biodegradable scaffolds for cartilage tissue engineering.
    Lee SH; Kim BS; Kim SH; Kang SW; Kim YH
    Macromol Biosci; 2004 Aug; 4(8):802-10. PubMed ID: 15468274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of highly porous tissue-engineering scaffolds using selective spherical porogens.
    Johnson T; Bahrampourian R; Patel A; Mequanint K
    Biomed Mater Eng; 2010; 20(2):107-18. PubMed ID: 20592448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A collagen/smooth muscle cell-incorporated elastic scaffold for tissue-engineered vascular grafts.
    Park IS; Kim SH; Kim YH; Kim IH; Kim SH
    J Biomater Sci Polym Ed; 2009; 20(11):1645-60. PubMed ID: 19619403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dynamically cultured collagen/cells-incorporated elastic scaffold for small-diameter vascular grafts.
    Park IS; Kim YH; Jung Y; Kim SH; Kim SH
    J Biomater Sci Polym Ed; 2012; 23(14):1807-20. PubMed ID: 21943800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of PLGA scaffolds with graded pores by using a gelatin-microsphere template as porogen.
    Tang G; Zhang H; Zhao Y; Zhang Y; Li X; Yuan X
    J Biomater Sci Polym Ed; 2012; 23(17):2241-57. PubMed ID: 22137329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of pulsatile bioreactor culture on vascular smooth muscle cells seeded on electrospun poly (lactide-co-ε-caprolactone) scaffold.
    Mun CH; Jung Y; Kim SH; Kim HC; Kim SH
    Artif Organs; 2013 Dec; 37(12):E168-78. PubMed ID: 23834728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of macroporous biodegradable PLGA scaffolds for cell attachment with the use of mixed salts as porogen additives.
    Lin HR; Kuo CJ; Yang CY; Shaw SY; Wu YJ
    J Biomed Mater Res; 2002; 63(3):271-9. PubMed ID: 12115758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of scaffold architecture and pore size on smooth muscle cell growth.
    Lee M; Wu BM; Dunn JC
    J Biomed Mater Res A; 2008 Dec; 87(4):1010-6. PubMed ID: 18257081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel biphasic elastomeric scaffold for small-diameter blood vessel tissue engineering.
    Yang J; Motlagh D; Webb AR; Ameer GA
    Tissue Eng; 2005; 11(11-12):1876-86. PubMed ID: 16411834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of polycaprolactone porous scaffolds by combining solvent casting, particulate leaching, and polymer leaching techniques for bone tissue engineering.
    Thadavirul N; Pavasant P; Supaphol P
    J Biomed Mater Res A; 2014 Oct; 102(10):3379-92. PubMed ID: 24132871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Property studies on three-dimensional porous blended silk scaffolds].
    Rao J; Shen J; Quan D; Xu Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Oct; 23(10):1264-70. PubMed ID: 19957853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modifying three-dimensional scaffolds from novel nanocomposite materials using dissolvable porogen particles for use in liver tissue engineering.
    Adwan H; Fuller B; Seldon C; Davidson B; Seifalian A
    J Biomater Appl; 2013 Aug; 28(2):250-61. PubMed ID: 22532408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Salt fusion: an approach to improve pore interconnectivity within tissue engineering scaffolds.
    Murphy WL; Dennis RG; Kileny JL; Mooney DJ
    Tissue Eng; 2002 Feb; 8(1):43-52. PubMed ID: 11886653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solvent-free polymer/bioceramic scaffolds for bone tissue engineering: fabrication, analysis, and cell growth.
    Minton J; Janney C; Akbarzadeh R; Focke C; Subramanian A; Smith T; McKinney J; Liu J; Schmitz J; James PF; Yousefi AM
    J Biomater Sci Polym Ed; 2014; 25(16):1856-74. PubMed ID: 25178801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relating pore size variation of poly (ɛ-caprolactone) scaffolds to molecular weight of porogen and evaluation of scaffold properties after degradation.
    Columbus S; Krishnan LK; Kalliyana Krishnan V
    J Biomed Mater Res B Appl Biomater; 2014 May; 102(4):789-96. PubMed ID: 24142458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechano-active tissue engineering of vascular smooth muscle using pulsatile perfusion bioreactors and elastic PLCL scaffolds.
    Jeong SI; Kwon JH; Lim JI; Cho SW; Jung Y; Sung WJ; Kim SH; Kim YH; Lee YM; Kim BS; Choi CY; Kim SJ
    Biomaterials; 2005 Apr; 26(12):1405-11. PubMed ID: 15482828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new generation of sodium chloride porogen for tissue engineering.
    Tran RT; Naseri E; Kolasnikov A; Bai X; Yang J
    Biotechnol Appl Biochem; 2011; 58(5):335-44. PubMed ID: 21995536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.