BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 15165855)

  • 1. Multiple time scale backbone dynamics of homologous thermophilic and mesophilic ribonuclease HI enzymes.
    Butterwick JA; Loria JP; Astrof NS; Kroenke CD; Cole R; Rance M; Palmer AG
    J Mol Biol; 2004 Jun; 339(4):855-71. PubMed ID: 15165855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An inserted Gly residue fine tunes dynamics between mesophilic and thermophilic ribonucleases H.
    Butterwick JA; Palmer AG
    Protein Sci; 2006 Dec; 15(12):2697-707. PubMed ID: 17088323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of ribonuclease H: temperature dependence of motions on multiple time scales.
    Mandel AM; Akke M; Palmer AG
    Biochemistry; 1996 Dec; 35(50):16009-23. PubMed ID: 8973171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational preferences underlying reduced activity of a thermophilic ribonuclease H.
    Stafford KA; Trbovic N; Butterwick JA; Abel R; Friesner RA; Palmer AG
    J Mol Biol; 2015 Feb; 427(4):853-866. PubMed ID: 25550198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme dynamics from NMR spectroscopy.
    Palmer AG
    Acc Chem Res; 2015 Feb; 48(2):457-65. PubMed ID: 25574774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying the Relationship between Conformational Dynamics and Enzymatic Activity in Ribonuclease HI Homologues.
    Martin JA; Robustelli P; Palmer AG
    Biochemistry; 2020 Sep; 59(35):3201-3205. PubMed ID: 32813972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic system drift in protein evolution.
    Hart KM; Harms MJ; Schmidt BH; Elya C; Thornton JW; Marqusee S
    PLoS Biol; 2014 Nov; 12(11):e1001994. PubMed ID: 25386647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autonomously folding protein fragments reveal differences in the energy landscapes of homologous RNases H.
    Rosen LE; Marqusee S
    PLoS One; 2015; 10(3):e0119640. PubMed ID: 25803034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative molecular dynamics study of thermophilic and mesophilic ribonuclease HI enzymes.
    Tang L; Liu H
    J Biomol Struct Dyn; 2007 Feb; 24(4):379-92. PubMed ID: 17206853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative analysis of conformational exchange contributions to 1H-15N multiple-quantum relaxation using field-dependent measurements. Time scale and structural characterization of exchange in a calmodulin C-terminal domain mutant.
    Lundström P; Akke M
    J Am Chem Soc; 2004 Jan; 126(3):928-35. PubMed ID: 14733570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A thermodynamic comparison of mesophilic and thermophilic ribonucleases H.
    Hollien J; Marqusee S
    Biochemistry; 1999 Mar; 38(12):3831-6. PubMed ID: 10090773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stabilization of ribonuclease HI from Thermus thermophilus HB8 by the spontaneous formation of an intramolecular disulfide bond.
    Hirano N; Haruki M; Morikawa M; Kanaya S
    Biochemistry; 1998 Sep; 37(36):12640-8. PubMed ID: 9730837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of ribonuclease H from Thermus thermophilus HB8 refined at 2.8 A resolution.
    Ishikawa K; Okumura M; Katayanagi K; Kimura S; Kanaya S; Nakamura H; Morikawa K
    J Mol Biol; 1993 Mar; 230(2):529-42. PubMed ID: 8385228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors influencing the stability of alpha-helices and beta-strands in thermophilic ribonuclease H.
    Gromiha MM
    Prep Biochem Biotechnol; 2001 May; 31(2):103-12. PubMed ID: 11426698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature dependence of intramolecular dynamics of the basic leucine zipper of GCN4: implications for the entropy of association with DNA.
    Bracken C; Carr PA; Cavanagh J; Palmer AG
    J Mol Biol; 1999 Feb; 285(5):2133-46. PubMed ID: 9925790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Backbone dynamics and energetics of a calmodulin domain mutant exchanging between closed and open conformations.
    Evenäs J; Forsén S; Malmendal A; Akke M
    J Mol Biol; 1999 Jun; 289(3):603-17. PubMed ID: 10356332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural stability and internal motions of Escherichia coli ribonuclease HI: 15N relaxation and hydrogen-deuterium exchange analyses.
    Yamasaki K; Akasako-Furukawa A; Kanaya S
    J Mol Biol; 1998 Apr; 277(3):707-22. PubMed ID: 9533889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural distribution of stability in a thermophilic enzyme.
    Hollien J; Marqusee S
    Proc Natl Acad Sci U S A; 1999 Nov; 96(24):13674-8. PubMed ID: 10570131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilization of Escherichia coli ribonuclease HI by strategic replacement of amino acid residues with those from the thermophilic counterpart.
    Kimura S; Nakamura H; Hashimoto T; Oobatake M; Kanaya S
    J Biol Chem; 1992 Oct; 267(30):21535-42. PubMed ID: 1328237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the folding processes of T. thermophilus and E. coli ribonucleases H.
    Hollien J; Marqusee S
    J Mol Biol; 2002 Feb; 316(2):327-40. PubMed ID: 11851342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.