These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 15165864)
1. Electrostatics of ion stabilization in a ClC chloride channel homologue from Escherichia coli. Faraldo-Gómez JD; Roux B J Mol Biol; 2004 Jun; 339(4):981-1000. PubMed ID: 15165864 [TBL] [Abstract][Full Text] [Related]
2. Gating the selectivity filter in ClC chloride channels. Dutzler R; Campbell EB; MacKinnon R Science; 2003 Apr; 300(5616):108-12. PubMed ID: 12649487 [TBL] [Abstract][Full Text] [Related]
3. Structural basis for ion conduction and gating in ClC chloride channels. Dutzler R FEBS Lett; 2004 Apr; 564(3):229-33. PubMed ID: 15111101 [TBL] [Abstract][Full Text] [Related]
4. X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Dutzler R; Campbell EB; Cadene M; Chait BT; MacKinnon R Nature; 2002 Jan; 415(6869):287-94. PubMed ID: 11796999 [TBL] [Abstract][Full Text] [Related]
5. Tet repressor induction by tetracycline: a molecular dynamics, continuum electrostatics, and crystallographic study. Aleksandrov A; Schuldt L; Hinrichs W; Simonson T J Mol Biol; 2008 May; 378(4):898-912. PubMed ID: 18395746 [TBL] [Abstract][Full Text] [Related]
6. Projection structure of a ClC-type chloride channel at 6.5 A resolution. Mindell JA; Maduke M; Miller C; Grigorieff N Nature; 2001 Jan; 409(6817):219-23. PubMed ID: 11196649 [TBL] [Abstract][Full Text] [Related]
7. Ion transit pathways and gating in ClC chloride channels. Yin J; Kuang Z; Mahankali U; Beck TL Proteins; 2004 Nov; 57(2):414-21. PubMed ID: 15340928 [TBL] [Abstract][Full Text] [Related]
8. Electrostatics of the intracellular vestibule of K+ channels. Jogini V; Roux B J Mol Biol; 2005 Nov; 354(2):272-88. PubMed ID: 16242718 [TBL] [Abstract][Full Text] [Related]
9. Secondary active transport mediated by a prokaryotic homologue of ClC Cl- channels. Accardi A; Miller C Nature; 2004 Feb; 427(6977):803-7. PubMed ID: 14985752 [TBL] [Abstract][Full Text] [Related]
10. Chloride ion conduction without water coordination in the pore of ClC protein. Ko YJ; Jo WH J Comput Chem; 2010 Feb; 31(3):603-11. PubMed ID: 19551886 [TBL] [Abstract][Full Text] [Related]
11. The structure of the cytoplasmic domain of the chloride channel ClC-Ka reveals a conserved interaction interface. Markovic S; Dutzler R Structure; 2007 Jun; 15(6):715-25. PubMed ID: 17562318 [TBL] [Abstract][Full Text] [Related]
12. Ion-binding properties of the ClC chloride selectivity filter. Lobet S; Dutzler R EMBO J; 2006 Jan; 25(1):24-33. PubMed ID: 16341087 [TBL] [Abstract][Full Text] [Related]
15. Anion pathway and potential energy profiles along curvilinear bacterial ClC Cl- pores: electrostatic effects of charged residues. Miloshevsky GV; Jordan PC Biophys J; 2004 Feb; 86(2):825-35. PubMed ID: 14747318 [TBL] [Abstract][Full Text] [Related]
16. The SufE sulfur-acceptor protein contains a conserved core structure that mediates interdomain interactions in a variety of redox protein complexes. Goldsmith-Fischman S; Kuzin A; Edstrom WC; Benach J; Shastry R; Xiao R; Acton TB; Honig B; Montelione GT; Hunt JF J Mol Biol; 2004 Nov; 344(2):549-65. PubMed ID: 15522304 [TBL] [Abstract][Full Text] [Related]
17. Insights into the structural basis of substrate recognition by histidinol-phosphate aminotransferase from Corynebacterium glutamicum. Marienhagen J; Sandalova T; Sahm H; Eggeling L; Schneider G Acta Crystallogr D Biol Crystallogr; 2008 Jun; 64(Pt 6):675-85. PubMed ID: 18560156 [TBL] [Abstract][Full Text] [Related]
18. Calculating proton uptake/release and binding free energy taking into account ionization and conformation changes induced by protein-inhibitor association: application to plasmepsin, cathepsin D and endothiapepsin-pepstatin complexes. Alexov E Proteins; 2004 Aug; 56(3):572-84. PubMed ID: 15229889 [TBL] [Abstract][Full Text] [Related]
19. Structural analysis of the PP2C phosphatase tPphA from Thermosynechococcus elongatus: a flexible flap subdomain controls access to the catalytic site. Schlicker C; Fokina O; Kloft N; Grüne T; Becker S; Sheldrick GM; Forchhammer K J Mol Biol; 2008 Feb; 376(2):570-81. PubMed ID: 18164312 [TBL] [Abstract][Full Text] [Related]
20. Crystal structure of the cytoplasmic domain of the chloride channel ClC-0. Meyer S; Dutzler R Structure; 2006 Feb; 14(2):299-307. PubMed ID: 16472749 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]