These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 15165897)

  • 1. Yeast activator proteins and stress response: an overview.
    Rodrigues-Pousada CA; Nevitt T; Menezes R; Azevedo D; Pereira J; Amaral C
    FEBS Lett; 2004 Jun; 567(1):80-5. PubMed ID: 15165897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Yap family and its role in stress response.
    Rodrigues-Pousada C; Menezes RA; Pimentel C
    Yeast; 2010 May; 27(5):245-58. PubMed ID: 20148391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The yeast stress response. Role of the Yap family of b-ZIP transcription factors. The PABMB Lecture delivered on 30 June 2004 at the 29th FEBS Congress in Warsaw.
    Rodrigues-Pousada C; Nevitt T; Menezes R
    FEBS J; 2005 Jun; 272(11):2639-47. PubMed ID: 15943799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Alternative ways of stress regulation in cells of Saccharomyces cerevisiae: transcriptional activators Msn2 and Msn4].
    Erkina TI; Lavrova MV; Erkin AM
    Tsitologiia; 2009; 51(3):271-8. PubMed ID: 19435282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The fungal STRE-element-binding protein Seb1 is involved but not essential for glycerol dehydrogenase (gld1) gene expression and glycerol accumulation in Trichoderma atroviride during osmotic stress.
    Seidl V; Seiboth B; Karaffa L; Kubicek CP
    Fungal Genet Biol; 2004 Dec; 41(12):1132-40. PubMed ID: 15531216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The retrograde response links metabolism with stress responses, chromatin-dependent gene activation, and genome stability in yeast aging.
    Jazwinski SM
    Gene; 2005 Jul; 354():22-7. PubMed ID: 15890475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of Yap1 towards Saccharomyces cerevisiae adaptation to arsenic-mediated oxidative stress.
    Menezes RA; Amaral C; Batista-Nascimento L; Santos C; Ferreira RB; Devaux F; Eleutherio EC; Rodrigues-Pousada C
    Biochem J; 2008 Sep; 414(2):301-11. PubMed ID: 18439143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 14-3-3 Proteins are essential for regulation of RTG3-dependent transcription in Saccharomyces cerevisiae.
    van Heusden GP; Steensma HY
    Yeast; 2001 Dec; 18(16):1479-91. PubMed ID: 11748725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyper- and hyporesponsive mutant forms of the Saccharomyces cerevisiae Ssy1 amino acid sensor.
    Poulsen P; Gaber RF; Kielland-Brandt MC
    Mol Membr Biol; 2008 Feb; 25(2):164-76. PubMed ID: 18307103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Yeast metallothionein gene expression in response to metals and oxidative stress.
    Liu XD; Thiele DJ
    Methods; 1997 Mar; 11(3):289-99. PubMed ID: 9073572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making.
    Pérez-Torrado R; Bruno-Bárcena JM; Matallana E
    Appl Environ Microbiol; 2005 Nov; 71(11):6831-7. PubMed ID: 16269716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Independent recruitment of mediator and SAGA by the activator Met4.
    Leroy C; Cormier L; Kuras L
    Mol Cell Biol; 2006 Apr; 26(8):3149-63. PubMed ID: 16581789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative transcriptome, proteome, and sulfur metabolite profiling of the Saccharomyces cerevisiae response to arsenite.
    Thorsen M; Lagniel G; Kristiansson E; Junot C; Nerman O; Labarre J; Tamás MJ
    Physiol Genomics; 2007 Jun; 30(1):35-43. PubMed ID: 17327492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. YAP4 gene expression is induced in response to several forms of stress in Saccharomyces cerevisiae.
    Nevitt T; Pereira J; Rodrigues-Pousada C
    Yeast; 2004 Dec; 21(16):1365-74. PubMed ID: 15565582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors.
    Yvert G; Brem RB; Whittle J; Akey JM; Foss E; Smith EN; Mackelprang R; Kruglyak L
    Nat Genet; 2003 Sep; 35(1):57-64. PubMed ID: 12897782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of Yap1p and Skn7p-mediated oxidative stress response in the defence of Saccharomyces cerevisiae against singlet oxygen.
    Brombacher K; Fischer BB; Rüfenacht K; Eggen RI
    Yeast; 2006 Jul; 23(10):741-50. PubMed ID: 16862604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The human Ski-interacting protein functionally substitutes for the yeast PRP45 gene.
    Figueroa JD; Hayman MJ
    Biochem Biophys Res Commun; 2004 Jul; 319(4):1105-9. PubMed ID: 15194481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constitutive expression of yeast phospholipid biosynthetic genes by variants of Ino2 activator defective for interaction with Opi1 repressor.
    Heyken WT; Repenning A; Kumme J; Schüller HJ
    Mol Microbiol; 2005 May; 56(3):696-707. PubMed ID: 15819625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ethanol stress stimulates the Ca2+-mediated calcineurin/Crz1 pathway in Saccharomyces cerevisiae.
    Araki Y; Wu H; Kitagaki H; Akao T; Takagi H; Shimoi H
    J Biosci Bioeng; 2009 Jan; 107(1):1-6. PubMed ID: 19147100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How the Rgt1 transcription factor of Saccharomyces cerevisiae is regulated by glucose.
    Polish JA; Kim JH; Johnston M
    Genetics; 2005 Feb; 169(2):583-94. PubMed ID: 15489524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.