These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 15165990)
1. Expression of cardiac troponin T with COOH-terminal truncation accelerates cross-bridge interaction kinetics in mouse myocardium. Stelzer JE; Patel JR; Olsson MC; Fitzsimons DP; Leinwand LA; Moss RL Am J Physiol Heart Circ Physiol; 2004 Oct; 287(4):H1756-61. PubMed ID: 15165990 [TBL] [Abstract][Full Text] [Related]
2. Cross-bridge interaction kinetics in rat myocardium are accelerated by strong binding of myosin to the thin filament. Fitzsimons DP; Patel JR; Moss RL J Physiol; 2001 Jan; 530(Pt 2):263-72. PubMed ID: 11208974 [TBL] [Abstract][Full Text] [Related]
3. Cooperative mechanisms in the activation dependence of the rate of force development in rabbit skinned skeletal muscle fibers. Fitzsimons DP; Patel JR; Campbell KS; Moss RL J Gen Physiol; 2001 Feb; 117(2):133-48. PubMed ID: 11158166 [TBL] [Abstract][Full Text] [Related]
4. Ablation of myosin-binding protein-C accelerates force development in mouse myocardium. Stelzer JE; Fitzsimons DP; Moss RL Biophys J; 2006 Jun; 90(11):4119-27. PubMed ID: 16513777 [TBL] [Abstract][Full Text] [Related]
5. Impact of cardiac troponin T N-terminal deletion and phosphorylation on myofilament function. Sumandea MP; Vahebi S; Sumandea CA; Garcia-Cazarin ML; Staidle J; Homsher E Biochemistry; 2009 Aug; 48(32):7722-31. PubMed ID: 19586048 [TBL] [Abstract][Full Text] [Related]
6. Cardiac troponin T mutations: correlation between the type of mutation and the nature of myofilament dysfunction in transgenic mice. Montgomery DE; Tardiff JC; Chandra M J Physiol; 2001 Oct; 536(Pt 2):583-92. PubMed ID: 11600691 [TBL] [Abstract][Full Text] [Related]
7. The N-terminal extension of cardiac troponin T stabilizes the blocked state of cardiac thin filament. Gollapudi SK; Mamidi R; Mallampalli SL; Chandra M Biophys J; 2012 Sep; 103(5):940-8. PubMed ID: 23009843 [TBL] [Abstract][Full Text] [Related]
8. Modulation of the rate of cardiac muscle contraction by troponin C constructs with various calcium binding affinities. Norman C; Rall JA; Tikunova SB; Davis JP Am J Physiol Heart Circ Physiol; 2007 Oct; 293(4):H2580-7. PubMed ID: 17693547 [TBL] [Abstract][Full Text] [Related]
9. Protein kinase A-induced myofilament desensitization to Ca(2+) as a result of phosphorylation of cardiac myosin-binding protein C. Chen PP; Patel JR; Rybakova IN; Walker JW; Moss RL J Gen Physiol; 2010 Dec; 136(6):615-27. PubMed ID: 21115695 [TBL] [Abstract][Full Text] [Related]
10. Identification of two new regions in the N-terminus of cardiac troponin T that have divergent effects on cardiac contractile function. Mamidi R; Mallampalli SL; Wieczorek DF; Chandra M J Physiol; 2013 Mar; 591(5):1217-34. PubMed ID: 23207592 [TBL] [Abstract][Full Text] [Related]
11. Ca(2+) activation of myofilaments from transgenic mouse hearts expressing R92Q mutant cardiac troponin T. Chandra M; Rundell VL; Tardiff JC; Leinwand LA; De Tombe PP; Solaro RJ Am J Physiol Heart Circ Physiol; 2001 Feb; 280(2):H705-13. PubMed ID: 11158969 [TBL] [Abstract][Full Text] [Related]
12. Activation dependence of stretch activation in mouse skinned myocardium: implications for ventricular function. Stelzer JE; Larsson L; Fitzsimons DP; Moss RL J Gen Physiol; 2006 Feb; 127(2):95-107. PubMed ID: 16446502 [TBL] [Abstract][Full Text] [Related]
13. Coexistence of cardiac troponin T variants reduces heart efficiency. Feng HZ; Jin JP Am J Physiol Heart Circ Physiol; 2010 Jul; 299(1):H97-H105. PubMed ID: 20418479 [TBL] [Abstract][Full Text] [Related]
14. Cross-bridge versus thin filament contributions to the level and rate of force development in cardiac muscle. Regnier M; Martin H; Barsotti RJ; Rivera AJ; Martyn DA; Clemmens E Biophys J; 2004 Sep; 87(3):1815-24. PubMed ID: 15345560 [TBL] [Abstract][Full Text] [Related]
15. Troponin T isoforms modulate calcium dependence of the kinetics of the cross-bridge cycle: studies using a transgenic mouse line. MacFarland SM; Jin JP; Brozovich FV Arch Biochem Biophys; 2002 Sep; 405(2):241-6. PubMed ID: 12220538 [TBL] [Abstract][Full Text] [Related]
16. Pathogenesis associated with a restrictive cardiomyopathy mutant in cardiac troponin T is due to reduced protein stability and greatly increased myofilament Ca2+ sensitivity. Parvatiyar MS; Pinto JR Biochim Biophys Acta; 2015 Feb; 1850(2):365-72. PubMed ID: 25450489 [TBL] [Abstract][Full Text] [Related]
17. Acceleration of stretch activation in murine myocardium due to phosphorylation of myosin regulatory light chain. Stelzer JE; Patel JR; Moss RL J Gen Physiol; 2006 Sep; 128(3):261-72. PubMed ID: 16908724 [TBL] [Abstract][Full Text] [Related]
18. Impact of temperature on cross-bridge cycling kinetics in rat myocardium. de Tombe PP; Stienen GJ J Physiol; 2007 Oct; 584(Pt 2):591-600. PubMed ID: 17717017 [TBL] [Abstract][Full Text] [Related]
19. cTnT1, a cardiac troponin T isoform, decreases myofilament tension and affects the left ventricular pressure waveform. Nassar R; Malouf NN; Mao L; Rockman HA; Oakeley AE; Frye JR; Herlong JR; Sanders SP; Anderson PA Am J Physiol Heart Circ Physiol; 2005 Mar; 288(3):H1147-56. PubMed ID: 15513965 [TBL] [Abstract][Full Text] [Related]
20. Increase in tension-dependent ATP consumption induced by cardiac troponin T mutation. Chandra M; Tschirgi ML; Tardiff JC Am J Physiol Heart Circ Physiol; 2005 Nov; 289(5):H2112-9. PubMed ID: 15994854 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]