BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 15166092)

  • 1. Contribution of fluid shear response in leukocytes to hemodynamic resistance in the spontaneously hypertensive rat.
    Fukuda S; Yasu T; Kobayashi N; Ikeda N; Schmid-Schönbein GW
    Circ Res; 2004 Jul; 95(1):100-8. PubMed ID: 15166092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leukocyte fluid shear response in the presence of glucocorticoid.
    Fukuda S; Mitsuoka H; Schmid-Schönbein GW
    J Leukoc Biol; 2004 Apr; 75(4):664-70. PubMed ID: 14726499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of the microvascular response in the healing wound in the spontaneously hypertensive and non-hypertensive rat.
    Rendell MS; Milliken BK; Finnegan MF; Finney DE; Healy JC; Bonner RF
    Int J Surg Investig; 2000; 2(1):17-25. PubMed ID: 12774334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of leukocyte adhesion in spontaneously hypertensive rats by adrenal corticosteroids.
    Suzuki H; Zweifach BW; Forrest MJ; Schmid-Schönbein GW
    J Leukoc Biol; 1995 Jan; 57(1):20-6. PubMed ID: 7530280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systemic hemodynamic and microvascular responses in spontaneously hypertensive rats during Escherichia coli bacteremia.
    Lübbe AS; Harris PD; Garrison RN
    Circ Shock; 1993 Jul; 40(3):157-67. PubMed ID: 8348679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Centrifugation attenuates the fluid shear response of circulating leukocytes.
    Fukuda S; Schmid-Schönbein GW
    J Leukoc Biol; 2002 Jul; 72(1):133-9. PubMed ID: 12101272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of antihypertensive drugs on capillary rarefaction in spontaneously hypertensive rats: intravital microscopy and histologic analysis.
    Sabino B; Lessa MA; Nascimento AR; Rodrigues CA; Henriques Md; Garzoni LR; Levy BI; Tibiriçá E
    J Cardiovasc Pharmacol; 2008 Apr; 51(4):402-9. PubMed ID: 18427284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microvascular display of xanthine oxidase and NADPH oxidase in the spontaneously hypertensive rat.
    DeLano FA; Parks DA; Ruedi JM; Babior BM; Schmid-Schönbein GW
    Microcirculation; 2006; 13(7):551-66. PubMed ID: 16990214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impairment of flow-induced dilation of skeletal muscle arterioles with elevated oxygen in normotensive and hypertensive rats.
    Frisbee JC; Roman RJ; Falck JR; Linderman JR; Lombard JH
    Microvasc Res; 2000 Jul; 60(1):37-48. PubMed ID: 10873513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An in-vivo analysis of capillary stasis and endothelial apoptosis in a model of hypertension.
    Tran ED; Schmid-Schönbein GW
    Microcirculation; 2007; 14(8):793-804. PubMed ID: 17924279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of uninephrectomy on renal structural properties in spontaneously hypertensive rats.
    Kinuno H; Tomoda F; Koike T; Takata M; Inoue H
    Clin Exp Pharmacol Physiol; 2005 Mar; 32(3):173-8. PubMed ID: 15743399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Receptor cleavage reduces the fluid shear response in neutrophils of the spontaneously hypertensive rat.
    Chen AY; DeLano FA; Valdez SR; Ha JN; Shin HY; Schmid-Schönbein GW
    Am J Physiol Cell Physiol; 2010 Dec; 299(6):C1441-9. PubMed ID: 20861466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity of pressor responses to central hypertonic saline is greatly enhanced even in pre-hypertensive spontaneously hypertensive rats.
    Sasaki Y; Fujimura M; Furukawa M; Kubo T
    Neurosci Lett; 2006 May; 399(3):255-8. PubMed ID: 16495000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of dipeptidyl peptidase iv inhibition on arterial blood pressure.
    Jackson EK; Dubinion JH; Mi Z
    Clin Exp Pharmacol Physiol; 2008 Jan; 35(1):29-34. PubMed ID: 18047624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydralazine reduces leukocyte migration through different mechanisms in spontaneously hypertensive and normotensive rats.
    Rodrigues SF; de Oliveira MA; dos Santos RA; Soares AG; de Cássia Tostes R; Carvalho MH; Fortes ZB
    Eur J Pharmacol; 2008 Jul; 589(1-3):206-14. PubMed ID: 18554582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of adrenal vein occlusion on whole-kidney hemodynamics in the spontaneously hypertensive rats.
    Alsonius K; Ambramczyk P
    J Physiol Pharmacol; 2000 Jun; 51(2):223-7. PubMed ID: 10898095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-intensity voluntary running lowers blood pressure with simultaneous improvement in endothelium-dependent vasodilatation and insulin sensitivity in aged spontaneously hypertensive rats.
    Sun MW; Qian FL; Wang J; Tao T; Guo J; Wang L; Lu AY; Chen H
    Hypertens Res; 2008 Mar; 31(3):543-52. PubMed ID: 18497475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuroendocrine or behavioral effects of acute or chronic emotional stress in Wistar Kyoto (WKY) and spontaneously hypertensive (SHR) rats.
    Roman O; Seres J; Pometlova M; Jurcovicova J
    Endocr Regul; 2004 Dec; 38(4):151-5. PubMed ID: 15841794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of chymase-dependent angiotensin II formation in regulating blood pressure in spontaneously hypertensive rats.
    Kirimura K; Takai S; Jin D; Muramatsu M; Kishi K; Yoshikawa K; Nakabayashi M; Mino Y; Miyazaki M
    Hypertens Res; 2005 May; 28(5):457-64. PubMed ID: 16156510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of leukocyte-capillary plugging on the resistance to flow in the microvasculature of cremaster muscle for normal and activated leukocytes.
    Eppihimer MJ; Lipowsky HH
    Microvasc Res; 1996 Mar; 51(2):187-201. PubMed ID: 8778574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.