These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 15166219)

  • 1. Global analyses of sumoylated proteins in Saccharomyces cerevisiae. Induction of protein sumoylation by cellular stresses.
    Zhou W; Ryan JJ; Zhou H
    J Biol Chem; 2004 Jul; 279(31):32262-8. PubMed ID: 15166219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute ethanol stress induces sumoylation of conserved chromatin structural proteins in
    Bradley AI; Marsh NM; Borror HR; Mostoller KE; Gama AI; Gardner RG
    Mol Biol Cell; 2021 May; 32(11):1121-1133. PubMed ID: 33788582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sumoylation of the yeast Gcn5 protein.
    Sterner DE; Nathan D; Reindle A; Johnson ES; Berger SL
    Biochemistry; 2006 Jan; 45(3):1035-42. PubMed ID: 16411780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Circuitry of the SUMO (Small Ubiquitin-like Modifier) Pathway in Controlling Sumoylation Homeostasis and Suppressing Genome Rearrangements.
    de Albuquerque CP; Liang J; Gaut NJ; Zhou H
    J Biol Chem; 2016 Apr; 291(16):8825-35. PubMed ID: 26921322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The S. cerevisiae SUMO stress response is a conjugation-deconjugation cycle that targets the transcription machinery.
    Lewicki MC; Srikumar T; Johnson E; Raught B
    J Proteomics; 2015 Apr; 118():39-48. PubMed ID: 25434491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications.
    Nathan D; Ingvarsdottir K; Sterner DE; Bylebyl GR; Dokmanovic M; Dorsey JA; Whelan KA; Krsmanovic M; Lane WS; Meluh PB; Johnson ES; Berger SL
    Genes Dev; 2006 Apr; 20(8):966-76. PubMed ID: 16598039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional reconstitution of a tunable E3-dependent sumoylation pathway in Escherichia coli.
    O'Brien SP; DeLisa MP
    PLoS One; 2012; 7(6):e38671. PubMed ID: 22701689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods to study SUMO dynamics in yeast.
    Pabst S; Döring LM; Petreska N; Dohmen RJ
    Methods Enzymol; 2019; 618():187-210. PubMed ID: 30850052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sumoylation controls the timing of Tup1-mediated transcriptional deactivation.
    Ng CH; Akhter A; Yurko N; Burgener JM; Rosonina E; Manley JL
    Nat Commun; 2015 Mar; 6():6610. PubMed ID: 25766875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SUMO Pathway Modulation of Regulatory Protein Binding at the Ribosomal DNA Locus in Saccharomyces cerevisiae.
    Gillies J; Hickey CM; Su D; Wu Z; Peng J; Hochstrasser M
    Genetics; 2016 Apr; 202(4):1377-94. PubMed ID: 26837752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of SUMO modification sites in the base excision repair protein, Ntg1.
    Swartzlander DB; McPherson AJ; Powers HR; Limpose KL; Kuiper EG; Degtyareva NP; Corbett AH; Doetsch PW
    DNA Repair (Amst); 2016 Dec; 48():51-62. PubMed ID: 27839712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global analysis of protein sumoylation in Saccharomyces cerevisiae.
    Wohlschlegel JA; Johnson ES; Reed SI; Yates JR
    J Biol Chem; 2004 Oct; 279(44):45662-8. PubMed ID: 15326169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deficient sumoylation of yeast 2-micron plasmid proteins Rep1 and Rep2 associated with their loss from the plasmid-partitioning locus and impaired plasmid inheritance.
    Pinder JB; McQuaid ME; Dobson MJ
    PLoS One; 2013; 8(3):e60384. PubMed ID: 23555963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global shifts in protein sumoylation in response to electrophile and oxidative stress.
    Manza LL; Codreanu SG; Stamer SL; Smith DL; Wells KS; Roberts RL; Liebler DC
    Chem Res Toxicol; 2004 Dec; 17(12):1706-15. PubMed ID: 15606148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human Regulatory Protein Ki-1/57 Is a Target of SUMOylation and Affects PML Nuclear Body Formation.
    Saito Â; Souza EE; Costa FC; Meirelles GV; Gonçalves KA; Santos MT; Bressan GC; McComb ME; Costello CE; Whelan SA; Kobarg J
    J Proteome Res; 2017 Sep; 16(9):3147-3157. PubMed ID: 28695742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SIM-dependent enhancement of substrate-specific SUMOylation by a ubiquitin ligase in vitro.
    Parker JL; Ulrich HD
    Biochem J; 2014 Feb; 457(3):435-40. PubMed ID: 24224485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of SUMO-protein conjugates.
    Sacher M; Pfander B; Jentsch S
    Methods Enzymol; 2005; 399():392-404. PubMed ID: 16338371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of Substrates of Protein-Group SUMOylation.
    Psakhye I; Jentsch S
    Methods Mol Biol; 2016; 1475():219-31. PubMed ID: 27631809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Protein Sumoylation.
    Sarge KD
    Curr Protoc Protein Sci; 2016 Feb; 83():14.8.1-14.8.8. PubMed ID: 26836406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein group modification and synergy in the SUMO pathway as exemplified in DNA repair.
    Psakhye I; Jentsch S
    Cell; 2012 Nov; 151(4):807-820. PubMed ID: 23122649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.