These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 15167121)

  • 1. Limitations on upper bound dose to adults due to intake of 129I in drinking water and a total diet-implications relative to the proposed Yucca Mountain high level radioactive waste repository.
    Moeller DW; Ryan MT
    Health Phys; 2004 Jun; 86(6):586-9. PubMed ID: 15167121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impacts of stable element intake on 14C and 129I dose estimates.
    Moeller DW; Ryan MT; Sun LS; Cherry RN
    Health Phys; 2005 Oct; 89(4):349-54. PubMed ID: 16155456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Significance of 14C and 228Ra in terms of the proposed Yucca Mountain high-level radioactive waste repository.
    Moeller DW; Ryan MT; Cherry RN; Sun LS
    Health Phys; 2006 Sep; 91(3):238-48. PubMed ID: 16891899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity analyses of the standards for the proposed Yucca Mountain repository--a review, evaluation, and commentary.
    Moeller DW; Ryan MT
    Health Phys; 2005 May; 88(5):459-68. PubMed ID: 15824594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retrospective evaluation of 131I deposition density and thyroid dose in Poland after the Chernobyl accident.
    Pietrzak-Flis Z; Krajewski P; Radwan I; Muramatsu Y
    Health Phys; 2003 Jun; 84(6):698-708. PubMed ID: 12822579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 127I and 129I/127I isotopic ratio in marine alga Fucus virsoides from the North Adriatic Sea.
    Osterc A; Stibilj V
    J Environ Radioact; 2008 Apr; 99(4):757-65. PubMed ID: 18054129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The possible contribution of 129I in the drinking water and food supply to the nodular formation of thyroid tissue.
    Dogru O; Dogru M; Aygen E; Camci C; Kirkil C; Canbazoglu C; Sahin S
    Health Phys; 2005 Mar; 88(3):243-7. PubMed ID: 15706144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The combined impact on doses to man of multiple, authorized, radionuclide discharges for the year 1999 reaching the upper river thames, uk.
    Hilton J; Harvey M; Simmonds J
    Health Phys; 2004 Jul; 87(1):33-45. PubMed ID: 15194920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 129I and 127I transport in the Mississippi River.
    Oktay SD; Santschi PH; Moran JE; Sharma P
    Environ Sci Technol; 2001 Nov; 35(22):4470-6. PubMed ID: 11757603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Historical development and evolution of EPRI's post-closure dose assessment of potential releases to the biosphere from the proposed HLW repository at Yucca Mountain.
    Smith G; Kozak MW
    Health Phys; 2011 Dec; 101(6):709-21. PubMed ID: 22048489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concentration of 129I in aquatic biota collected from a lake adjacent to the spent nuclear fuel reprocessing plant in Rokkasho, Japan.
    Ueda S; Kakiuchi H; Hasegawa H; Kawamura H; Hisamatsu S
    Radiat Prot Dosimetry; 2015 Nov; 167(1-3):176-80. PubMed ID: 25935011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors affecting dose estimates for long-term performance assessments: case study-Armagosa Valley.
    Moeller DW; Ryan MT; Sun LS
    Health Phys; 2007 Feb; 92(2):127-33. PubMed ID: 17220714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A biosphere modeling methodology for dose assessments of the potential Yucca Mountain deep geological high level radioactive waste repository.
    Watkins BM; Smith GM; Little RH; Kessler J
    Health Phys; 1999 Apr; 76(4):355-67. PubMed ID: 10086596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comprehensive dose reconstruction methodology for former rocketdyne/atomics international radiation workers.
    Boice JD; Leggett RW; Ellis ED; Wallace PW; Mumma M; Cohen SS; Brill AB; Chadda B; Boecker BB; Yoder RC; Eckerman KF
    Health Phys; 2006 May; 90(5):409-30. PubMed ID: 16607174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurements of 129I in human and bovine thyroids in Europe--transfer of 129I into the food chain.
    Handl J; Pfau A; Huth FW
    Health Phys; 1990 May; 58(5):609-18. PubMed ID: 2341250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iodine-129 in waterfowl muscle from a radioactive leaching pond complex in southeastern Idaho.
    Halford DK; Markham OD
    Health Phys; 1984 Jun; 46(6):1259-63. PubMed ID: 6724936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drinking-water contribution to natural background radiation.
    Cothern CR; Lappenbusch WL; Michel J
    Health Phys; 1986 Jan; 50(1):33-47. PubMed ID: 3943972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncertainties on the committed equivalent dose to the thyroid as a function of age for different iodine isotopes.
    Fritsch P; Champion C; Ménétrier F; Delforge J
    Radiat Prot Dosimetry; 2003; 105(1-4):247-50. PubMed ID: 14526965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 125I thyroid intakes: consideration of thyroid radiation dose, and air and water concentration limits.
    Cranley K; Bell TK
    Int J Appl Radiat Isot; 1979 Mar; 30(3):161-3. PubMed ID: 447422
    [No Abstract]   [Full Text] [Related]  

  • 20. Normal organ radiation dosimetry and associated uncertainties in nuclear medicine, with emphasis on iodine-131.
    Brill AB; Stabin M; Bouville A; Ron E
    Radiat Res; 2006 Jul; 166(1 Pt 2):128-40. PubMed ID: 16808602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.