These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 15167657)

  • 1. Microfracture and changes in energy absorption to fracture of young vertebral cancellous bone following physiological fatigue loading.
    Lu WW; Luk KD; Cheung KC; Gui-Xing Q; Shen JX; Yuen L; Ouyang J; Leong JC
    Spine (Phila Pa 1976); 2004 Jun; 29(11):1196-201; discussion 1202. PubMed ID: 15167657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Restoring geometric and loading alignment of the thoracic spine with a vertebral compression fracture: effects of balloon (bone tamp) inflation and spinal extension.
    Gaitanis IN; Carandang G; Phillips FM; Magovern B; Ghanayem AJ; Voronov LI; Havey RM; Zindrick MR; Hadjipavlou AG; Patwardhan AG
    Spine J; 2005; 5(1):45-54. PubMed ID: 15653084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prophylactic vertebroplasty may reduce the risk of adjacent intact vertebra from fatigue injury: an ex vivo biomechanical study.
    Chiang CK; Wang YH; Yang CY; Yang BD; Wang JL
    Spine (Phila Pa 1976); 2009 Feb; 34(4):356-64. PubMed ID: 19214094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trabecular microfracture precedes cortical shell failure in the rat caudal vertebra under cyclic overloading.
    Kummari SR; Davis AJ; Vega LA; Ahn N; Cassinelli EH; Hernandez CJ
    Calcif Tissue Int; 2009 Aug; 85(2):127-33. PubMed ID: 19488669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of bone structural properties by accumulation and coalescence of microcracks.
    Danova NA; Colopy SA; Radtke CL; Kalscheur VL; Markel MD; Vanderby R; McCabe RP; Escarcega AJ; Muir P
    Bone; 2003 Aug; 33(2):197-205. PubMed ID: 14499353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical changes after the augmentation of experimental osteoporotic vertebral compression fractures in the cadaveric thoracic spine.
    Kayanja MM; Togawa D; Lieberman IH
    Spine J; 2005; 5(1):55-63. PubMed ID: 15653085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioactive bone cement as a principal fixture for spinal burst fracture: an in vitro biomechanical and morphologic study.
    Lu WW; Cheung KM; Li YW; Luk KD; Holmes AD; Zhu QA; Leong JC
    Spine (Phila Pa 1976); 2001 Dec; 26(24):2684-90; discussion 2690-1. PubMed ID: 11740355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Response of the osteocyte syncytium adjacent to and distant from linear microcracks during adaptation to cyclic fatigue loading.
    Colopy SA; Benz-Dean J; Barrett JG; Sample SJ; Lu Y; Danova NA; Kalscheur VL; Vanderby R; Markel MD; Muir P
    Bone; 2004 Oct; 35(4):881-91. PubMed ID: 15454095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adjacent vertebral body fracture following vertebroplasty with polymethylmethacrylate or calcium phosphate cement: biomechanical evaluation of the cadaveric spine.
    Nouda S; Tomita S; Kin A; Kawahara K; Kinoshita M
    Spine (Phila Pa 1976); 2009 Nov; 34(24):2613-8. PubMed ID: 19910764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of the burst fracture in the thoracolumbar spine. The effect of loading rate.
    Tran NT; Watson NA; Tencer AF; Ching RP; Anderson PA
    Spine (Phila Pa 1976); 1995 Sep; 20(18):1984-8. PubMed ID: 8578372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiographical texture analysis improves the prediction of vertebral fracture: an ex vivo biomechanical study.
    Guenoun D; Le Corroller T; Acid S; Pithioux M; Pauly V; Ariey-Bonnet D; Chabrand P; Champsaur P
    Spine (Phila Pa 1976); 2013 Oct; 38(21):E1320-6. PubMed ID: 23823577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathogenesis of Vertebral Anterior Wedge Deformity: A 2-Stage Process?
    Landham PR; Gilbert SJ; Baker-Rand HL; Pollintine P; Robson Brown KA; Adams MA; Dolan P
    Spine (Phila Pa 1976); 2015 Jun; 40(12):902-8. PubMed ID: 25822544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vertebroplasty with high-viscosity polymethylmethacrylate cement facilitates vertebral body restoration in vitro.
    Rüger M; Schmoelz W
    Spine (Phila Pa 1976); 2009 Nov; 34(24):2619-25. PubMed ID: 19881400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical evaluation of an injectable calcium phosphate cement for vertebroplasty.
    Lim TH; Brebach GT; Renner SM; Kim WJ; Kim JG; Lee RE; Andersson GB; An HS
    Spine (Phila Pa 1976); 2002 Jun; 27(12):1297-302. PubMed ID: 12065977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal characterization of microdamage accumulation in rat ulnae in response to uniaxial compressive fatigue loading.
    Zhang X; Liu X; Yan Z; Cai J; Kang F; Shan S; Wang P; Zhai M; Edward Guo X; Luo E; Jing D
    Bone; 2018 Mar; 108():156-164. PubMed ID: 29331298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acute thoracolumbar burst fractures: a new view of loading mechanisms.
    Langrana NA; Harten RD RD; Lin DC; Reiter MF; Lee CK
    Spine (Phila Pa 1976); 2002 Mar; 27(5):498-508. PubMed ID: 11880835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Biomechanical effects of iliac screw plates on stability of lumbo-iliac fixation construct].
    Wang L; Pan H; Yu B; Xie C; Xu Y; Zheng Z
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 May; 27(5):606-11. PubMed ID: 23879102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical evaluation of monosegmental pedicle instrumentation in a calf spine model and the role of fractured vertebrae in screw stability.
    Wei F; Zhou Z; Wang L; Liu S; Zhong R; Liu X; Cui S; Pan X; Gao M; Zhao Y
    BMC Vet Res; 2016 Mar; 12():57. PubMed ID: 26993472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vertebral fractures usually affect the cranial endplate because it is thinner and supported by less-dense trabecular bone.
    Zhao FD; Pollintine P; Hole BD; Adams MA; Dolan P
    Bone; 2009 Feb; 44(2):372-9. PubMed ID: 19049912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo skeletal imaging of 18F-fluoride with positron emission tomography reveals damage- and time-dependent responses to fatigue loading in the rat ulna.
    Silva MJ; Uthgenannt BA; Rutlin JR; Wohl GR; Lewis JS; Welch MJ
    Bone; 2006 Aug; 39(2):229-36. PubMed ID: 16533624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.