These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. A polymeric master replication technology for mass fabrication of poly(dimethylsiloxane) microfluidic devices. Li HF; Lin JM; Su RG; Cai ZW; Uchiyama K Electrophoresis; 2005 May; 26(9):1825-33. PubMed ID: 15812838 [TBL] [Abstract][Full Text] [Related]
4. A toner-mediated lithographic technology for rapid prototyping of glass microchannels. Coltro WK; Piccin E; Fracassi da Silva JA; Lucio do Lago C; Carrilho E Lab Chip; 2007 Jul; 7(7):931-4. PubMed ID: 17594016 [TBL] [Abstract][Full Text] [Related]
9. Soft lithography: masters on demand. Abdelgawad M; Watson MW; Young EW; Mudrik JM; Ungrin MD; Wheeler AR Lab Chip; 2008 Aug; 8(8):1379-85. PubMed ID: 18651082 [TBL] [Abstract][Full Text] [Related]
10. Electrophoresis microchip fabricated by a direct-printing process with end-channel amperometric detection. Coltro WK; da Silva JA; da Silva HD; Richter EM; Furlan R; Angnes L; do Lago CL; Mazo LH; Carrilho E Electrophoresis; 2004 Nov; 25(21-22):3832-9. PubMed ID: 15565680 [TBL] [Abstract][Full Text] [Related]
11. Microfluidic devices with photodefinable pseudo-valves for protein separation. Fan ZH Methods Mol Biol; 2009; 544():43-52. PubMed ID: 19488692 [TBL] [Abstract][Full Text] [Related]
12. Simple approaches to close the open structure of microfluidic chips and connecting them to the macro-world. Székely L; Guttman A J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Sep; 841(1-2):123-8. PubMed ID: 16597517 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of microfluidic devices using dry film photoresist for microchip capillary electrophoresis. Tsai YC; Jen HP; Lin KW; Hsieh YZ J Chromatogr A; 2006 Apr; 1111(2):267-71. PubMed ID: 16384565 [TBL] [Abstract][Full Text] [Related]
14. High intensity light emitting diode array as an alternative exposure source for the fabrication of electrophoretic microfluidic devices. Breadmore MC; Guijt RM J Chromatogr A; 2008 Dec; 1213(1):3-7. PubMed ID: 18930463 [TBL] [Abstract][Full Text] [Related]
15. Microfluidic devices obtained by thermal toner transferring on glass substrate. do Lago CL; Neves CA; Pereira de Jesus D; da Silva HD; Brito-Neto JG; Fracassi da Silva JA Electrophoresis; 2004 Nov; 25(21-22):3825-31. PubMed ID: 15565679 [TBL] [Abstract][Full Text] [Related]
16. A plastic microchip for nucleic acid purification. Liu Y; Cady NC; Batt CA Biomed Microdevices; 2007 Oct; 9(5):769-76. PubMed ID: 17530410 [TBL] [Abstract][Full Text] [Related]
17. Study of SU-8 to make a Ni master-mold: Adhesion, sidewall profile, and removal. Kim SJ; Yang H; Kim K; Lim YT; Pyo HB Electrophoresis; 2006 Aug; 27(16):3284-96. PubMed ID: 16915575 [TBL] [Abstract][Full Text] [Related]
19. Multichannel microchip electrophoresis device fabricated in polycarbonate with an integrated contact conductivity sensor array. Shadpour H; Hupert ML; Patterson D; Liu C; Galloway M; Stryjewski W; Goettert J; Soper SA Anal Chem; 2007 Feb; 79(3):870-8. PubMed ID: 17263312 [TBL] [Abstract][Full Text] [Related]
20. New approaches for fabrication of microfluidic capillary electrophoresis devices with on-chip conductivity detection. Guijt RM; Baltussen E; van der Steen G; Schasfoort RB; Schlautmann S; Billiet HA; Frank J; van Dedem GW; van den Berg A Electrophoresis; 2001 Jan; 22(2):235-41. PubMed ID: 11288890 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]