These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 15167806)

  • 1. Printed circuit technology for fabrication of plastic-based microfluidic devices.
    Sudarsan AP; Ugaz VM
    Anal Chem; 2004 Jun; 76(11):3229-35. PubMed ID: 15167806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plastic masters-rigid templates for soft lithography.
    Desai SP; Freeman DM; Voldman J
    Lab Chip; 2009 Jun; 9(11):1631-7. PubMed ID: 19458873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A polymeric master replication technology for mass fabrication of poly(dimethylsiloxane) microfluidic devices.
    Li HF; Lin JM; Su RG; Cai ZW; Uchiyama K
    Electrophoresis; 2005 May; 26(9):1825-33. PubMed ID: 15812838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A toner-mediated lithographic technology for rapid prototyping of glass microchannels.
    Coltro WK; Piccin E; Fracassi da Silva JA; Lucio do Lago C; Carrilho E
    Lab Chip; 2007 Jul; 7(7):931-4. PubMed ID: 17594016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lamination-based rapid prototyping of microfluidic devices using flexible thermoplastic substrates.
    Paul D; Pallandre A; Miserere S; Weber J; Viovy JL
    Electrophoresis; 2007 Apr; 28(7):1115-22. PubMed ID: 17330225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid fabrication of poly(dimethylsiloxane)-based microchip capillary electrophoresis devices using CO2 laser ablation.
    Fogarty BA; Heppert KE; Cory TJ; Hulbutta KR; Martin RS; Lunte SM
    Analyst; 2005 Jun; 130(6):924-30. PubMed ID: 15912242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of lab-on chip platforms by hot embossing and photo patterning.
    Maurya DK; Ng WY; Mahabadi KA; Liang YN; Rodríguez I
    Biotechnol J; 2007 Nov; 2(11):1381-8. PubMed ID: 17886237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Titanium-based dielectrophoresis devices for microfluidic applications.
    Zhang YT; Bottausci F; Rao MP; Parker ER; Mezic I; Macdonald NC
    Biomed Microdevices; 2008 Aug; 10(4):509-17. PubMed ID: 18214682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soft lithography: masters on demand.
    Abdelgawad M; Watson MW; Young EW; Mudrik JM; Ungrin MD; Wheeler AR
    Lab Chip; 2008 Aug; 8(8):1379-85. PubMed ID: 18651082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrophoresis microchip fabricated by a direct-printing process with end-channel amperometric detection.
    Coltro WK; da Silva JA; da Silva HD; Richter EM; Furlan R; Angnes L; do Lago CL; Mazo LH; Carrilho E
    Electrophoresis; 2004 Nov; 25(21-22):3832-9. PubMed ID: 15565680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic devices with photodefinable pseudo-valves for protein separation.
    Fan ZH
    Methods Mol Biol; 2009; 544():43-52. PubMed ID: 19488692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simple approaches to close the open structure of microfluidic chips and connecting them to the macro-world.
    Székely L; Guttman A
    J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Sep; 841(1-2):123-8. PubMed ID: 16597517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of microfluidic devices using dry film photoresist for microchip capillary electrophoresis.
    Tsai YC; Jen HP; Lin KW; Hsieh YZ
    J Chromatogr A; 2006 Apr; 1111(2):267-71. PubMed ID: 16384565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High intensity light emitting diode array as an alternative exposure source for the fabrication of electrophoretic microfluidic devices.
    Breadmore MC; Guijt RM
    J Chromatogr A; 2008 Dec; 1213(1):3-7. PubMed ID: 18930463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic devices obtained by thermal toner transferring on glass substrate.
    do Lago CL; Neves CA; Pereira de Jesus D; da Silva HD; Brito-Neto JG; Fracassi da Silva JA
    Electrophoresis; 2004 Nov; 25(21-22):3825-31. PubMed ID: 15565679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A plastic microchip for nucleic acid purification.
    Liu Y; Cady NC; Batt CA
    Biomed Microdevices; 2007 Oct; 9(5):769-76. PubMed ID: 17530410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of SU-8 to make a Ni master-mold: Adhesion, sidewall profile, and removal.
    Kim SJ; Yang H; Kim K; Lim YT; Pyo HB
    Electrophoresis; 2006 Aug; 27(16):3284-96. PubMed ID: 16915575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust polymer microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP).
    Hutchison JB; Haraldsson KT; Good BT; Sebra RP; Luo N; Anseth KS; Bowman CN
    Lab Chip; 2004 Dec; 4(6):658-62. PubMed ID: 15570381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multichannel microchip electrophoresis device fabricated in polycarbonate with an integrated contact conductivity sensor array.
    Shadpour H; Hupert ML; Patterson D; Liu C; Galloway M; Stryjewski W; Goettert J; Soper SA
    Anal Chem; 2007 Feb; 79(3):870-8. PubMed ID: 17263312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New approaches for fabrication of microfluidic capillary electrophoresis devices with on-chip conductivity detection.
    Guijt RM; Baltussen E; van der Steen G; Schasfoort RB; Schlautmann S; Billiet HA; Frank J; van Dedem GW; van den Berg A
    Electrophoresis; 2001 Jan; 22(2):235-41. PubMed ID: 11288890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.