These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 15167806)

  • 21. Thermoplastic elastomer gels: an advanced substrate for microfluidic chemical analysis systems.
    Sudarsan AP; Wang J; Ugaz VM
    Anal Chem; 2005 Aug; 77(16):5167-73. PubMed ID: 16097755
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Screen printing of solder resist as master substrates for fabrication of multi-level microfluidic channels and flask-shaped microstructures for cell-based applications.
    Yue W; Li CW; Xu T; Yang M
    Biosens Bioelectron; 2013 Mar; 41():675-83. PubMed ID: 23122749
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Poly(methyl methacrylate) CE microchips replicated from poly(dimethylsiloxane) templates for the determination of cations.
    Qu S; Chen X; Chen D; Yang P; Chen G
    Electrophoresis; 2006 Dec; 27(24):4910-8. PubMed ID: 17120260
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new fabrication process for a microchip electrophoresis device integrated with a three-electrode electrochemical detector.
    Tsai DM; Lin KW; Zen JM; Chen HY; Hong RH
    Electrophoresis; 2005 Aug; 26(15):3007-12. PubMed ID: 16007698
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication of UV epoxy resin masters for the replication of PDMS-based microchips.
    Pan YJ; Yang RJ
    Biomed Microdevices; 2007 Aug; 9(4):555-63. PubMed ID: 17508287
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid fabrication of a poly(dimethylsiloxane) microfluidic capillary gel electrophoresis system utilizing high precision machining.
    Zhao DS; Roy B; McCormick MT; Kuhr WG; Brazill SA
    Lab Chip; 2003 May; 3(2):93-9. PubMed ID: 15100789
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PDMS-based microfluidic device with multi-height structures fabricated by single-step photolithography using printed circuit board as masters.
    Li CW; Cheung CN; Yang J; Tzang CH; Yang M
    Analyst; 2003 Sep; 128(9):1137-42. PubMed ID: 14529020
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication of microfluidic systems in poly(dimethylsiloxane).
    McDonald JC; Duffy DC; Anderson JR; Chiu DT; Wu H; Schueller OJ; Whitesides GM
    Electrophoresis; 2000 Jan; 21(1):27-40. PubMed ID: 10634468
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rapid prototyping for injection moulded integrated microfluidic devices and diffractive element arrays.
    Hulme JP; Mohr S; Goddard NJ; Fielden PR
    Lab Chip; 2002 Nov; 2(4):203-6. PubMed ID: 15100811
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Patterned solvent delivery and etching for the fabrication of plastic microfluidic devices.
    Brister PC; Weston KD
    Anal Chem; 2005 Nov; 77(22):7478-82. PubMed ID: 16285703
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of master fabrication techniques on the characteristics of embossed microfluidic channels.
    Esch MB; Kapur S; Irizarry G; Genova V
    Lab Chip; 2003 May; 3(2):121-7. PubMed ID: 15100793
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deoxyribonucleic acid modified poly(dimethylsiloxane) microfluidic channels for the enhancement of microchip electrophoresis.
    Liang R; Hu P; Gan G; Qiu J
    Talanta; 2009 Mar; 77(5):1647-53. PubMed ID: 19159778
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Miniaturized and integrated fluorescence detectors for microfluidic capillary electrophoresis devices.
    Kamei T
    Methods Mol Biol; 2009; 503():361-74. PubMed ID: 19151952
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DEP actuated nanoliter droplet dispensing using feedback control.
    Wang KL; Jones TB; Raisanen A
    Lab Chip; 2009 Apr; 9(7):901-9. PubMed ID: 19294300
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multi-layer plastic/glass microfluidic systems containing electrical and mechanical functionality.
    Han A; Wang O; Graff M; Mohanty SK; Edwards TL; Han KH; Bruno Frazier A
    Lab Chip; 2003 Aug; 3(3):150-7. PubMed ID: 15100766
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flow sandwich-type immunoassay in microfluidic devices based on negative dielectrophoresis.
    Yasukawa T; Suzuki M; Sekiya T; Shiku H; Matsue T
    Biosens Bioelectron; 2007 May; 22(11):2730-6. PubMed ID: 17187978
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Continuous and reversible mixing or demixing of nanoparticles by dielectrophoresis.
    Viefhues M; Eichhorn R; Fredrich E; Regtmeier J; Anselmetti D
    Lab Chip; 2012 Feb; 12(3):485-94. PubMed ID: 22193706
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polyurethane from biosource as a new material for fabrication of microfluidic devices by rapid prototyping.
    Piccin E; Coltro WK; Fracassi da Silva JA; Neto SC; Mazo LH; Carrilho E
    J Chromatogr A; 2007 Nov; 1173(1-2):151-8. PubMed ID: 17964580
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultra rapid prototyping of microfluidic systems using liquid phase photopolymerization.
    Khoury C; Mensing GA; Beebe DJ
    Lab Chip; 2002 Feb; 2(1):50-5. PubMed ID: 15100862
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design and fabrication of chemically robust three-dimensional microfluidic valves.
    Maltezos G; Garcia E; Hanrahan G; Gomez FA; Vyawahare S; van Dam RM; Chen Y; Scherer A
    Lab Chip; 2007 Sep; 7(9):1209-11. PubMed ID: 17713623
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.