These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 15167806)

  • 41. Fabrication of a microfluidic device for the compartmentalization of neuron soma and axons.
    Harris J; Lee H; Vahidi B; Tu C; Cribbs D; Jeon NL; Cotman C
    J Vis Exp; 2007; (7):261. PubMed ID: 18989432
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-performance genetic analysis on microfabricated capillary array electrophoresis plastic chips fabricated by injection molding.
    Dang F; Tabata O; Kurokawa M; Ewis AA; Zhang L; Yamaoka Y; Shinohara S; Shinohara Y; Ishikawa M; Baba Y
    Anal Chem; 2005 Apr; 77(7):2140-6. PubMed ID: 15801748
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microfluidic operations using deformable polymer membranes fabricated by single layer soft lithography.
    Sundararajan N; Kim D; Berlin AA
    Lab Chip; 2005 Mar; 5(3):350-4. PubMed ID: 15726212
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Parallel separation of multiple samples with negative pressure sample injection on a 3-D microfluidic array chip.
    Zhang L; Yin X
    Electrophoresis; 2007 Apr; 28(8):1281-8. PubMed ID: 17366485
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Simple, rapid and, cost-effective fabrication of PDMS electrophoresis microchips using poly(vinyl acetate) as photoresist master.
    Lobo-Júnior EO; Gabriel EF; Dos Santos RA; de Souza FR; Lopes WD; Lima RS; Gobbi AL; Coltro WK
    Electrophoresis; 2017 Jan; 38(2):250-257. PubMed ID: 27377397
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fabrication and performance of a three-dimensionally adjustable device for the amperometric detection of microchip capillary electrophoresis.
    Chen G; Bao H; Yang P
    Electrophoresis; 2005 Dec; 26(24):4632-40. PubMed ID: 16278910
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fabrication and evaluation of single- and dual-channel (Pi-design) microchip electrophoresis with electrochemical detection.
    Pozo-Ayuso DF; Castaño-Alvarez M; Fernández-la-Villa A; García-Granda M; Fernández-Abedul MT; Costa-García A; Rodríguez-García J
    J Chromatogr A; 2008 Feb; 1180(1-2):193-202. PubMed ID: 18177663
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fabrication of multilayer-PDMS based microfluidic device for bio-particles concentration detection.
    Masrie M; Majlis BY; Yunas J
    Biomed Mater Eng; 2014; 24(6):1951-8. PubMed ID: 25226891
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Design, fabrication and characterization of monolithic embedded parylene microchannels in silicon substrate.
    Chen PJ; Shih CY; Tai YC
    Lab Chip; 2006 Jun; 6(6):803-10. PubMed ID: 16738734
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sample purification on a microfluidic device.
    Footz T; Wunsam S; Kulak S; Crabtree HJ; Glerum DM; Backhouse CJ
    Electrophoresis; 2001 Oct; 22(18):3868-75. PubMed ID: 11700715
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Leveraging liquid dielectrophoresis for microfluidic applications.
    Chugh D; Kaler KV
    Biomed Mater; 2008 Sep; 3(3):034009. PubMed ID: 18708707
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rapid Prototyping of Soft Lithography Masters for Microfluidic Devices Using Dry Film Photoresist in a Non-Cleanroom Setting.
    Mukherjee P; Nebuloni F; Gao H; Zhou J; Papautsky I
    Micromachines (Basel); 2019 Mar; 10(3):. PubMed ID: 30875965
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Design and numerical simulation of a DNA electrophoretic stretching device.
    Kim JM; Doyle PS
    Lab Chip; 2007 Feb; 7(2):213-25. PubMed ID: 17268624
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In situ fabrication of macroporous polymer networks within microfluidic devices by living radical photopolymerization and leaching.
    Simms HM; Brotherton CM; Good BT; Davis RH; Anseth KS; Bowman CN
    Lab Chip; 2005 Feb; 5(2):151-7. PubMed ID: 15672128
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Patterning, integration and characterisation of polymer optical oxygen sensors for microfluidic devices.
    Nock V; Blaikie RJ; David T
    Lab Chip; 2008 Aug; 8(8):1300-7. PubMed ID: 18651072
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Real-time monitoring of two-photon photopolymerization for use in fabrication of microfluidic devices.
    Stoneman M; Fox M; Zeng C; Raicu V
    Lab Chip; 2009 Mar; 9(6):819-27. PubMed ID: 19255664
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Planar thin film device for capillary electrophoresis.
    Peeni BA; Conkey DB; Barber JP; Kelly RT; Lee ML; Woolley AT; Hawkins AR
    Lab Chip; 2005 May; 5(5):501-5. PubMed ID: 15856085
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microcontact printing-based fabrication of digital microfluidic devices.
    Watson MW; Abdelgawad M; Ye G; Yonson N; Trottier J; Wheeler AR
    Anal Chem; 2006 Nov; 78(22):7877-85. PubMed ID: 17105183
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mini-electrochemical detector for microchip electrophoresis.
    Jiang L; Lu Y; Dai Z; Xie M; Lin B
    Lab Chip; 2005 Sep; 5(9):930-4. PubMed ID: 16100576
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.