These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 15167806)

  • 61. Stainless steel pinholes for fast fabrication of high-performance microchip electrophoresis devices by CO2 laser ablation.
    Yap YC; Guijt RM; Dickson TC; King AE; Breadmore MC
    Anal Chem; 2013 Nov; 85(21):10051-6. PubMed ID: 24063252
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Hydrodynamic fabrication of polymeric barcoded strips as components for parallel bio-analysis and programmable microactuation.
    Kim S; Oh H; Baek J; Kim H; Kim W; Lee S
    Lab Chip; 2005 Oct; 5(10):1168-72. PubMed ID: 16175275
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Modular integration of electronics and microfluidic systems using flexible printed circuit boards.
    Wu A; Wang L; Jensen E; Mathies R; Boser B
    Lab Chip; 2010 Feb; 10(4):519-21. PubMed ID: 20126694
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Rapid fabrication of a microfluidic device with integrated optical waveguides for DNA fragment analysis.
    Bliss CL; McMullin JN; Backhouse CJ
    Lab Chip; 2007 Oct; 7(10):1280-7. PubMed ID: 17896011
    [TBL] [Abstract][Full Text] [Related]  

  • 65. High resolution DNA separations using microchip electrophoresis.
    Sinville R; Soper SA
    J Sep Sci; 2007 Jul; 30(11):1714-28. PubMed ID: 17623451
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A low-leakage sample plug injection scheme for crossform microfluidic capillary electrophoresis devices incorporating a restricted cross-channel intersection.
    Chang CL; Hou HH; Fu LM; Tsai CH
    Electrophoresis; 2008 Aug; 29(15):3135-44. PubMed ID: 18600833
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Nonlithographic fabrication of microfluidic devices.
    Vullev VI; Wan J; Heinrich V; Landsman P; Bower PE; Xia B; Millare B; Jones G
    J Am Chem Soc; 2006 Dec; 128(50):16062-72. PubMed ID: 17165759
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Adsorption-resistant acrylic copolymer for prototyping of microfluidic devices for proteins and peptides.
    Liu J; Sun X; Lee ML
    Anal Chem; 2007 Mar; 79(5):1926-31. PubMed ID: 17249641
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Fluid mixing in planar spiral microchannels.
    Sudarsan AP; Ugaz VM
    Lab Chip; 2006 Jan; 6(1):74-82. PubMed ID: 16372072
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Reciprocating flow-based centrifugal microfluidics mixer.
    Noroozi Z; Kido H; Micic M; Pan H; Bartolome C; Princevac M; Zoval J; Madou M
    Rev Sci Instrum; 2009 Jul; 80(7):075102. PubMed ID: 19655976
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Rapid method for design and fabrication of passive micromixers in microfluidic devices using a direct-printing process.
    Liu AL; He FY; Wang K; Zhou T; Lu Y; Xia XH
    Lab Chip; 2005 Sep; 5(9):974-8. PubMed ID: 16100582
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Modeling of a microfluidic channel in the presence of an electrostatic induced cross-flow.
    Scuor N; Gallina P; Sbaizero O; Mahajan RL
    Biomed Microdevices; 2005 Sep; 7(3):231-42. PubMed ID: 16133811
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Fabrication and validation of a multi-channel type microfluidic chip for electrokinetic streaming potential devices.
    Chun MS; Shim MS; Choi NW
    Lab Chip; 2006 Feb; 6(2):302-9. PubMed ID: 16450042
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Rapid fabrication of microfluidic devices in poly(dimethylsiloxane) by photocopying.
    Tan A; Rodgers K; Murrihy J; O'Mathuna C; Glennon JD
    Lab Chip; 2001 Sep; 1(1):7-9. PubMed ID: 15100882
    [TBL] [Abstract][Full Text] [Related]  

  • 75. DNA detection on plastic: surface activation protocol to convert polycarbonate substrates to biochip platforms.
    Li Y; Wang Z; Ou LM; Yu HZ
    Anal Chem; 2007 Jan; 79(2):426-33. PubMed ID: 17222004
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Technique for microfabrication of polymeric-based microchips from an SU-8 master with temperature-assisted vaporized organic solvent bonding.
    Koesdjojo MT; Koch CR; Remcho VT
    Anal Chem; 2009 Feb; 81(4):1652-9. PubMed ID: 19166284
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Toner and paper-based fabrication techniques for microfluidic applications.
    Coltro WK; de Jesus DP; da Silva JA; do Lago CL; Carrilho E
    Electrophoresis; 2010 Aug; 31(15):2487-98. PubMed ID: 20665911
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Rapid prototyping of microfluidic devices with a wax printer.
    Kaigala GV; Ho S; Penterman R; Backhouse CJ
    Lab Chip; 2007 Mar; 7(3):384-7. PubMed ID: 17330171
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Pure-silica optical waveguides, fiber couplers, and high-aspect ratio submicrometer channels for electrokinetic separation devices.
    Mogensen KB; Eriksson F; Gustafsson O; Nikolajsen RP; Kutter JP
    Electrophoresis; 2004 Nov; 25(21-22):3788-95. PubMed ID: 15565688
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Sensing DNA-coatings of microparticles using micropipettes.
    Steinbock LJ; Stober G; Keyser UF
    Biosens Bioelectron; 2009 Apr; 24(8):2423-7. PubMed ID: 19171475
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.