These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 1516807)

  • 1. Re-examination of the metabolic potentials of the acetogens Clostridium aceticum and Clostridium formicoaceticum: chemolithoautotrophic and aromatic-dependent growth.
    Lux MF; Drake HL
    FEMS Microbiol Lett; 1992 Aug; 74(1):49-56. PubMed ID: 1516807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biotransformations of aromatic aldehydes by acetogenic bacteria.
    Lux MF; Keith E; Hsu TD; Drake HL
    FEMS Microbiol Lett; 1990 Jan; 55(1-2):73-7. PubMed ID: 2328911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the H2- and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui.
    Daniel SL; Hsu T; Dean SI; Drake HL
    J Bacteriol; 1990 Aug; 172(8):4464-71. PubMed ID: 2376565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism of aromatic aldehydes as cosubstrates by the acetogen Clostridium formicoaceticum.
    Frank C; Schwarz U; Matthies C; Drake HL
    Arch Microbiol; 1998 Nov; 170(6):427-34. PubMed ID: 9799286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clostridium formicoaceticum nov. spec. isolation, description and distinction from C. aceticum and C. thermoaceticum.
    Andreesen JR; Gottschalk G; Schlegel HG
    Arch Mikrobiol; 1970; 72(2):154-74. PubMed ID: 4918913
    [No Abstract]   [Full Text] [Related]  

  • 6. Clostridium aceticum (Wieringa), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide.
    Braun M; Mayer F; Gottschalk G
    Arch Microbiol; 1981 Jan; 128(3):288-93. PubMed ID: 6783001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deciphering mixotrophic Clostridium formicoaceticum metabolism and energy conservation: Genomic analysis and experimental studies.
    Bao T; Cheng C; Xin X; Wang J; Wang M; Yang ST
    Genomics; 2019 Dec; 111(6):1687-1694. PubMed ID: 30465914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotransformations of carboxylated aromatic compounds by the acetogen Clostridium thermoaceticum: generation of growth-supportive CO2 equivalents under CO2-limited conditions.
    Hsu T; Daniel SL; Lux MF; Drake HL
    J Bacteriol; 1990 Jan; 172(1):212-7. PubMed ID: 2104603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of molecular hydrogen and carbon dioxide on chemo-organotrophic growth of Acetobacterium woodii and Clostridium aceticum.
    Braun K; Gottschalk G
    Arch Microbiol; 1981 Jan; 128(3):294-8. PubMed ID: 6783002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaction engineering analysis of the autotrophic energy metabolism of Clostridium aceticum.
    Mayer A; Weuster-Botz D
    FEMS Microbiol Lett; 2017 Dec; 364(22):. PubMed ID: 29069379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon monoxide conversion with Clostridium aceticum.
    Mayer A; Schädler T; Trunz S; Stelzer T; Weuster-Botz D
    Biotechnol Bioeng; 2018 Nov; 115(11):2740-2750. PubMed ID: 30063246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen utilization by clostridia in sewage sludge.
    Ohwaki K; Hungate RE
    Appl Environ Microbiol; 1977 Jun; 33(6):1270-4. PubMed ID: 879782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New isolation of Clostridium aceticum (Wieringa).
    Adamse AD
    Antonie Van Leeuwenhoek; 1980; 46(6):523-31. PubMed ID: 6786214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of chemicals from C1 gases (CO, CO
    Fernández-Naveira Á; Abubackar HN; Veiga MC; Kennes C
    World J Microbiol Biotechnol; 2017 Mar; 33(3):43. PubMed ID: 28160118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of nitrate on the autotrophic metabolism of the acetogens Clostridium thermoautotrophicum and Clostridium thermoaceticum.
    Fröstl JM; Seifritz C; Drake HL
    J Bacteriol; 1996 Aug; 178(15):4597-603. PubMed ID: 8755890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lithotrophic growth and hydrogen metabolism by Clostridium magnum.
    Bomar M; Hippe H; Schink B
    FEMS Microbiol Lett; 1991 Oct; 67(3):347-9. PubMed ID: 1769543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous Formate and Syngas Conversion Boosts Growth and Product Formation by
    Schwarz I; Angelina A; Hambrock P; Weuster-Botz D
    Molecules; 2024 Jun; 29(11):. PubMed ID: 38893534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fixation of CO2 and CO on a diverse range of carbohydrates using anaerobic, non-photosynthetic mixotrophy.
    Maru BT; Munasinghe PC; Gilary H; Jones SW; Tracy BP
    FEMS Microbiol Lett; 2018 Apr; 365(8):. PubMed ID: 29462309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new pathway of autotrophic growth utilizing carbon monoxide or carbon dioxide and hydrogen.
    Wood HG; Ragsdale SW; Pezacka E
    Biochem Int; 1986 Mar; 12(3):421-40. PubMed ID: 3011003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Complete Genome Sequence of Clostridium aceticum: a Missing Link between Rnf- and Cytochrome-Containing Autotrophic Acetogens.
    Poehlein A; Cebulla M; Ilg MM; Bengelsdorf FR; Schiel-Bengelsdorf B; Whited G; Andreesen JR; Gottschalk G; Daniel R; Dürre P
    mBio; 2015 Sep; 6(5):e01168-15. PubMed ID: 26350967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.