These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 1516816)

  • 21. Effect of vitamin A treatment on superoxide dismutase-deficient yeast strains.
    Roehrs R; Freitas DR; Masuda A; Henriques JA; Guecheva TN; Ramos AL; Saffi J
    Arch Microbiol; 2010 Mar; 192(3):221-8. PubMed ID: 20131044
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Candida albicans expresses an unusual cytoplasmic manganese-containing superoxide dismutase (SOD3 gene product) upon the entry and during the stationary phase.
    Lamarre C; LeMay JD; Deslauriers N; Bourbonnais Y
    J Biol Chem; 2001 Nov; 276(47):43784-91. PubMed ID: 11562375
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metallation state of human manganese superoxide dismutase expressed in Saccharomyces cerevisiae.
    Whittaker MM; Whittaker JW
    Arch Biochem Biophys; 2012 Jul; 523(2):191-7. PubMed ID: 22561997
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of antioxidants on Saccharomyces cerevisiae mutants deficient in superoxide dismutases.
    Krasowska A; Dziadkowiec D; Łukaszewicz M; Wojtowicz K; Sigler K
    Folia Microbiol (Praha); 2003; 48(6):754-60. PubMed ID: 15058187
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expression in Saccharomyces cerevisiae of a gene associated with cytoplasmic male sterility from maize: respiratory dysfunction and uncoupling of yeast mitochondria.
    Glab N; Wise RP; Pring DR; Jacq C; Slonimski P
    Mol Gen Genet; 1990 Aug; 223(1):24-32. PubMed ID: 2259341
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antioxidant activity of L-ascorbic acid in wild-type and superoxide dismutase deficient strains of Saccharomyces cerevisiae.
    Saffi J; Sonego L; Varela QD; Salvador M
    Redox Rep; 2006; 11(4):179-84. PubMed ID: 16984741
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mitochondrial superoxide decreases yeast survival in stationary phase.
    Longo VD; Liou LL; Valentine JS; Gralla EB
    Arch Biochem Biophys; 1999 May; 365(1):131-42. PubMed ID: 10222047
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The ATX1 gene of Saccharomyces cerevisiae encodes a small metal homeostasis factor that protects cells against reactive oxygen toxicity.
    Lin SJ; Culotta VC
    Proc Natl Acad Sci U S A; 1995 Apr; 92(9):3784-8. PubMed ID: 7731983
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional interactions between heterologously expressed starch-branching enzymes of maize and the glycogen synthases of Brewer's yeast.
    Seo BS; Kim S; Scott MP; Singletary GW; Wong KS; James MG; Myers AM
    Plant Physiol; 2002 Apr; 128(4):1189-99. PubMed ID: 11950968
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Maize contains a Lon protease gene that can partially complement a yeast pim1-deletion mutant.
    Barakat S; Pearce DA; Sherman F; Rapp WD
    Plant Mol Biol; 1998 May; 37(1):141-54. PubMed ID: 9620272
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protective role of superoxide dismutases against ionizing radiation in yeast.
    Lee JH; Choi IY; Kil IS; Kim SY; Yang ES; Park JW
    Biochim Biophys Acta; 2001 May; 1526(2):191-8. PubMed ID: 11325541
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression cloning in Fe2+ transport defective yeast of a novel maize MYC transcription factor.
    Loulergue C; Lebrun M; Briat JF
    Gene; 1998 Dec; 225(1-2):47-57. PubMed ID: 9931428
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants.
    Bowler C; Slooten L; Vandenbranden S; De Rycke R; Botterman J; Sybesma C; Van Montagu M; Inzé D
    EMBO J; 1991 Jul; 10(7):1723-32. PubMed ID: 2050109
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Growth on ethanol results in co-ordinated Saccharomyces cerevisiae response to inactivation of genes encoding superoxide dismutases.
    Lushchak OV; Semchyshyn HM; Lushchak VI
    Redox Rep; 2007; 12(4):181-8. PubMed ID: 17705988
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Processing of a chimeric protein in chloroplasts is different in transgenic maize and tobacco plants.
    Van Breusegem F; Kushnir S; Slooten L; Bauw G; Botterman J; Van Montagu M; Inzé D
    Plant Mol Biol; 1998 Oct; 38(3):491-6. PubMed ID: 9747856
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mutations in PMR1 suppress oxidative damage in yeast cells lacking superoxide dismutase.
    Lapinskas PJ; Cunningham KW; Liu XF; Fink GR; Culotta VC
    Mol Cell Biol; 1995 Mar; 15(3):1382-8. PubMed ID: 7862131
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deletion analysis of the maize mitochondrial superoxide dismutase transit peptide.
    White JA; Scandalios JG
    Proc Natl Acad Sci U S A; 1989 May; 86(10):3534-8. PubMed ID: 2726735
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The induction of manganese superoxide dismutase in response to stress in Nicotiana plumbaginifolia.
    Bowler C; Alliotte T; De Loose M; Van Montagu M; Inzé D
    EMBO J; 1989 Jan; 8(1):31-8. PubMed ID: 2540959
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Free-radical first responders: the characterization of CuZnSOD and MnSOD regulation during freezing of the freeze-tolerant North American wood frog, Rana sylvatica.
    Dawson NJ; Katzenback BA; Storey KB
    Biochim Biophys Acta; 2015 Jan; 1850(1):97-106. PubMed ID: 25316288
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Manganese superoxide dismutase deficiency exacerbates the mitochondrial ROS production and oxidative damage in Chagas disease.
    Wen JJ; Garg NJ
    PLoS Negl Trop Dis; 2018 Jul; 12(7):e0006687. PubMed ID: 30044789
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.