BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 1516850)

  • 21. The mitochondrial site of superoxide formation.
    Nohl H; Jordan W
    Biochem Biophys Res Commun; 1986 Jul; 138(2):533-9. PubMed ID: 3017331
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The reaction of nitric oxide with ubiquinol: kinetic properties and biological significance.
    Poderoso JJ; Carreras MC; Schöpfer F; Lisdero CL; Riobó NA; Giulivi C; Boveris AD; Boveris A; Cadenas E
    Free Radic Biol Med; 1999 Apr; 26(7-8):925-35. PubMed ID: 10232836
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cooperation of a "reactive oxygen cycle" with the Q cycle and the proton cycle in the respiratory chain--superoxide generating and cycling mechanisms in mitochondria.
    Liu SS
    J Bioenerg Biomembr; 1999 Aug; 31(4):367-76. PubMed ID: 10665526
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The bifunctional activity of ubiquinone in lysosomal membranes.
    Nohl H; Gille L
    Biogerontology; 2002; 3(1-2):125-31. PubMed ID: 12014831
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ubisemiquinone radicals from the cytochrome b-c1 complex of the mitochondrial electron transport chain--demonstration of QP-S radical formation.
    Wei Y; Scholes CP; King TE
    Biochem Biophys Res Commun; 1981 Apr; 99(4):1411-9. PubMed ID: 6266422
    [No Abstract]   [Full Text] [Related]  

  • 26. Experimental observations on the structure and function of mitochondrial complex III that are unresolved by the protonmotive ubiquinone-cycle hypothesis.
    Rieske JS
    J Bioenerg Biomembr; 1986 Jun; 18(3):235-57. PubMed ID: 3015898
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Localization of a ferricyanide-reactive site of cytochrome b-c1 complex, possibly of cytochrome b or ubisemiquinone, at the outer face of submitochondrial particles.
    Kunz WS; Konstantinov A; Tsofina L; Liberman EA
    FEBS Lett; 1984 Jul; 172(2):261-6. PubMed ID: 6086391
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Theoretical study of the energetics of the reactions of triplet dioxygen with hydroquinone, semiquinone, and their protonated forms: relation to the mechanism of superoxide generation in the respiratory chain.
    Bobrowski M; Liwo A; Hirao K
    J Phys Chem B; 2007 Apr; 111(13):3543-9. PubMed ID: 17388501
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Revealing various coupling of electron transfer and proton pumping in mitochondrial respiratory chain.
    Sun F; Zhou Q; Pang X; Xu Y; Rao Z
    Curr Opin Struct Biol; 2013 Aug; 23(4):526-38. PubMed ID: 23867107
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lysosomal ROS formation.
    Nohl H; Gille L
    Redox Rep; 2005; 10(4):199-205. PubMed ID: 16259787
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ubisemiquinone radicals in liver: implications for a mitochondrial Q cycle in vivo.
    Davies KJ; Hochstein P
    Biochem Biophys Res Commun; 1982 Aug; 107(4):1292-9. PubMed ID: 6291526
    [No Abstract]   [Full Text] [Related]  

  • 32. Characterization of ubisemiquinone radical in the cytochrome b-c1 segment of the mitochondrial respiratory chain.
    Nagaoka S; Yu L; King TE
    Arch Biochem Biophys; 1981 May; 208(2):334-43. PubMed ID: 6266344
    [No Abstract]   [Full Text] [Related]  

  • 33. Oxidative damage to mitochondria is mediated by the Ca(2+)-dependent inner-membrane permeability transition.
    Takeyama N; Matsuo N; Tanaka T
    Biochem J; 1993 Sep; 294 ( Pt 3)(Pt 3):719-25. PubMed ID: 7691056
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The probable site of action of thenolytrifluoracetone on the respiratory chain.
    Ingledew WJ; Ohnishi T
    Biochem J; 1977 Jun; 164(3):617-20. PubMed ID: 196591
    [TBL] [Abstract][Full Text] [Related]  

  • 35. EPR characterization of ubisemiquinones and iron-sulfur cluster N2, central components of the energy coupling in the NADH-ubiquinone oxidoreductase (complex I) in situ.
    Magnitsky S; Toulokhonova L; Yano T; Sled VD; Hägerhäll C; Grivennikova VG; Burbaev DS; Vinogradov AD; Ohnishi T
    J Bioenerg Biomembr; 2002 Jun; 34(3):193-208. PubMed ID: 12171069
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Location and activity of ubiquinone 10 and ubiquinone analogues in model and biological membranes.
    Cornell BA; Keniry MA; Post A; Robertson RN; Weir LE; Westerman PW
    Biochemistry; 1987 Dec; 26(24):7702-7. PubMed ID: 3322405
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dihydrolipoic acid maintains ubiquinone in the antioxidant active form by two-electron reduction of ubiquinone and one-electron reduction of ubisemiquinone.
    Kozlov AV; Gille L; Staniek K; Nohl H
    Arch Biochem Biophys; 1999 Mar; 363(1):148-54. PubMed ID: 10049509
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Candida albicans and selenium.
    Reid GM
    Med Hypotheses; 2003 Feb; 60(2):188-9. PubMed ID: 12606233
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Studies on a stabilisation of ubisemiquinone by Escherichia coli quinol oxidase, cytochrome bo.
    Ingledew WJ; Ohnishi T; Salerno JC
    Eur J Biochem; 1995 Feb; 227(3):903-8. PubMed ID: 7867653
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The iron-sulfur clusters 2 and ubisemiquinone radicals of NADH:ubiquinone oxidoreductase are involved in energy coupling in submitochondrial particles.
    van Belzen R; Kotlyar AB; Moon N; Dunham WR; Albracht SP
    Biochemistry; 1997 Jan; 36(4):886-93. PubMed ID: 9020788
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.