BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 1516850)

  • 41. Reduction of 1,4-quinone and ubiquinones by hydrogen atom transfer under UVA irradiation.
    Biondi C; Galeazzi R; Littarru G; Greci L
    Free Radic Res; 2002 Apr; 36(4):399-404. PubMed ID: 12069103
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ca(2+)-induced mitochondrial membrane permeabilization: role of coenzyme Q redox state.
    Kowaltowski AJ; Castilho RF; Vercesi AE
    Am J Physiol; 1995 Jul; 269(1 Pt 1):C141-7. PubMed ID: 7631741
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of the complex I-associated ubisemiquinone species: toward the understanding of their functional roles in the electron/proton transfer reaction.
    Yano T; Magnitsky S; Ohnishi T
    Biochim Biophys Acta; 2000 Aug; 1459(2-3):299-304. PubMed ID: 11004443
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Proton translocation linked to the activity of the bi-trans-membrane electron transport chain.
    Marzulli D; La Piana G; Cafagno L; Fransvea E; Lofrumento NE
    Arch Biochem Biophys; 1995 May; 319(1):36-48. PubMed ID: 7771804
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interaction of electron leak and proton leak in respiratory chain of mitochondria--proton leak induced by superoxide from an electron leak pathway of univalent reduction of oxygen.
    Liu S; Jiao X; Wang X; Zhang L
    Sci China C Life Sci; 1996 Apr; 39(2):168-78. PubMed ID: 8760464
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species.
    Starkov AA; Fiskum G; Chinopoulos C; Lorenzo BJ; Browne SE; Patel MS; Beal MF
    J Neurosci; 2004 Sep; 24(36):7779-88. PubMed ID: 15356189
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Kinetics, control, and mechanism of ubiquinone reduction by the mammalian respiratory chain-linked NADH-ubiquinone reductase.
    Vinogradov AD
    J Bioenerg Biomembr; 1993 Aug; 25(4):367-75. PubMed ID: 8226718
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mitochondrial superoxide anion production and release into intermembrane space.
    Han D; Antunes F; Daneri F; Cadenas E
    Methods Enzymol; 2002; 349():271-80. PubMed ID: 11912916
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of ubiquinone extraction on the reaction of the mitochondrial bc1 complex with ferricyanide.
    Pasquali P; Degli Esposti M; Landi L; Cabrini L; Lenaz G
    J Bioenerg Biomembr; 1985 Oct; 17(5):283-94. PubMed ID: 3003046
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Interaction of ubisemiquinone with succinate dehydrogenase and the cytochrome chain of mitochondria].
    Grigolava IV; Konstantinov AA; Ksenzenko MIu; Ruuge EK; Tikhonov AN
    Biokhimiia; 1982 Dec; 47(12):1970-82. PubMed ID: 6297622
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Susceptibility of mitochondrial membranes to calcium and reactive oxygen species: implications for ischemic and toxic tissue damage.
    Malis CD; Bonventre JV
    Prog Clin Biol Res; 1988; 282():235-59. PubMed ID: 3071798
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ubiquinone redox behavior in plant mitochondria during electron transport.
    Ribas-Carbo M; Wiskich JT; Berry JA; Siedow JN
    Arch Biochem Biophys; 1995 Feb; 317(1):156-60. PubMed ID: 7872778
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dual involvement of coenzyme Q10 in redox signaling and inhibition of death signaling in the rat heart mitochondria.
    Yamamura T; Otani H; Nakao Y; Hattori R; Osako M; Imamura H; Das DK
    Antioxid Redox Signal; 2001 Feb; 3(1):103-12. PubMed ID: 11291590
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mitochondrial formation of OH Radicals by an ubisemiquinone-dependent reaction an alternative pathway to the iron-catalysed Haber-Weiss cycle.
    Nohl H; Jordan W; Hegner D
    Hoppe Seylers Z Physiol Chem; 1982 Jun; 363(6):599-607. PubMed ID: 6286449
    [No Abstract]   [Full Text] [Related]  

  • 55. [Effect of coenzyme Q10 on free radical centers in isolated rat myocardium tissue].
    Timoshin AA; Lakomkin VL; Gubkin AA; Ruuge EK
    Biofizika; 2003; 48(4):717-21. PubMed ID: 14515492
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Specificity of coenzyme Q10 for a balanced function of respiratory chain and endogenous ubiquinone biosynthesis in human cells.
    Fernández-Ayala DJ; López-Lluch G; García-Valdés M; Arroyo A; Navas P
    Biochim Biophys Acta; 2005 Jan; 1706(1-2):174-83. PubMed ID: 15620378
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mitochondrial abnormalities and oxidative imbalance in neurodegenerative disease.
    Ogawa O; Zhu X; Perry G; Smith MA
    Sci Aging Knowledge Environ; 2002 Oct; 2002(41):pe16. PubMed ID: 14603007
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Free radical imaging of endogenous redox molecules using dynamic nuclear polarization magnetic resonance imaging.
    Hyodo F; Ito S; Eto H; Elhelaly AE; Murata M; Akahoshi T; Utsumi H; Matuso M
    Free Radic Res; 2021 Apr; 55(4):343-351. PubMed ID: 33307891
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Energy-dependent Complex I-associated ubisemiquinones in submitochondrial particles.
    Vinogradov AD; Sled VD; Burbaev DS; Grivennikova VG; Moroz IA; Ohnishi T
    FEBS Lett; 1995 Aug; 370(1-2):83-7. PubMed ID: 7649309
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of ubisemiquinone radicals in succinate-ubiquinone reductase.
    Miki T; Yu L; Yu CA
    Arch Biochem Biophys; 1992 Feb; 293(1):61-6. PubMed ID: 1309986
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.