These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 15169010)

  • 1. Mean-field theory, mode-coupling theory, and the onset temperature in supercooled liquids.
    Brumer Y; Reichman DR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 1):041202. PubMed ID: 15169010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facilitation, complexity growth, mode coupling, and activated dynamics in supercooled liquids.
    Bhattacharyya SM; Bagchi B; Wolynes PG
    Proc Natl Acad Sci U S A; 2008 Oct; 105(42):16077-82. PubMed ID: 18927234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-dependent correlations in a supercooled liquid from nonlinear fluctuating hydrodynamics.
    Gupta BS; Das SP; Barrat JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041506. PubMed ID: 21599168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global perspectives on the energy landscapes of liquids, supercooled liquids, and glassy systems: geodesic pathways through the potential energy landscape.
    Wang C; Stratt RM
    J Chem Phys; 2007 Dec; 127(22):224504. PubMed ID: 18081403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular mode-coupling theory for supercooled liquids: application to water.
    Fabbian L; Latz A; Schilling R; Sciortino F; Tartaglia P; Theis C
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt B):5768-77. PubMed ID: 11970473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics in supercooled ionic organic liquids and mode coupling theory analysis.
    Li J; Wang I; Fruchey K; Fayer MD
    J Phys Chem A; 2006 Sep; 110(35):10384-91. PubMed ID: 16942043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical study of long-time dynamics and ergodic-nonergodic transitions in dense simple fluids.
    McCowan DD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022107. PubMed ID: 26382344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decoupling phenomena in supercooled liquids: signatures in the energy landscape.
    Chakrabarti D; Bagchi B
    Phys Rev Lett; 2006 May; 96(18):187801. PubMed ID: 16712397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real space origin of temperature crossovers in supercooled liquids.
    Berthier L; Garrahan JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 1):041201. PubMed ID: 14682930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relaxation patterns in supercooled liquids from generalized mode-coupling theory.
    Janssen LM; Mayer P; Reichman DR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052306. PubMed ID: 25493795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intermolecular forces and the glass transition.
    Hall RW; Wolynes PG
    J Phys Chem B; 2008 Jan; 112(2):301-12. PubMed ID: 17990867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Langevin dynamics of the Coulomb frustrated ferromagnet: A mode-coupling analysis.
    Grousson M; Krakoviack V; Tarjus G; Viot P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 2):026126. PubMed ID: 12241256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trap models and slow dynamics in supercooled liquids.
    Denny RA; Reichman DR; Bouchaud JP
    Phys Rev Lett; 2003 Jan; 90(2):025503. PubMed ID: 12570556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Random energy model for dynamics in supercooled liquids: N dependence.
    Keyes T; Chowdhary J; Kim J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 1):051110. PubMed ID: 12513470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of inherent structure in supercooled liquids near kinetic glass transition.
    Liao CY; Chen SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 1):031202. PubMed ID: 11580322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential energy landscape and inherent dynamics of a hard-sphere fluid.
    Ma Q; Stratt RM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042314. PubMed ID: 25375501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inherent-structure dynamics and diffusion in liquids.
    Keyes T; Chowdhary J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 1):032201. PubMed ID: 11580370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global perspectives on the energy landscapes of liquids, supercooled liquids, and glassy systems: the potential energy landscape ensemble.
    Wang C; Stratt RM
    J Chem Phys; 2007 Dec; 127(22):224503. PubMed ID: 18081402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Static and dynamic length scales in supercooled liquids: insights from molecular dynamics simulations of water and tri-propylene oxide.
    Klameth F; Henritzi P; Vogel M
    J Chem Phys; 2014 Apr; 140(14):144501. PubMed ID: 24735299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analogy of the slow dynamics between the supercooled liquid and supercooled plastic crystal states of difluorotetrachloroethane.
    Affouard F; Descamps M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 1):012501. PubMed ID: 16090015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.