These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 15169091)

  • 1. Tunable Fano resonances in transport through microwave billiards.
    Rotter S; Libisch F; Burgdörfer J; Kuhl U; Stöckmann HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 2):046208. PubMed ID: 15169091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing decoherence through Fano resonances.
    Bärnthaler A; Rotter S; Libisch F; Burgdörfer J; Gehler S; Kuhl U; Stöckmann HJ
    Phys Rev Lett; 2010 Jul; 105(5):056801. PubMed ID: 20867943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pseudopath semiclassical approximation to transport through open quantum billiards: Dyson equation for diffractive scattering.
    Stampfer C; Rotter S; Burgdörfer J; Wirtz L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036223. PubMed ID: 16241564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shot noise in the chaotic-to-regular crossover regime.
    Aigner F; Rotter S; Burgdörfer J
    Phys Rev Lett; 2005 Jun; 94(21):216801. PubMed ID: 16090338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterizing classical periodic orbits from quantum Green's functions in two-dimensional integrable systems: Harmonic oscillators and quantum billiards.
    Chen YF; Tung JC; Tuan PH; Yu YT; Liang HC; Huang KF
    Phys Rev E; 2017 Jan; 95(1-1):012217. PubMed ID: 28208465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculations of light scattering from isolated and interacting metallic nanowires of arbitrary cross section by means of Green's theorem surface integral equations in parametric form.
    Giannini V; Sánchez-Gil JA
    J Opt Soc Am A Opt Image Sci Vis; 2007 Sep; 24(9):2822-30. PubMed ID: 17767251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fano interference in quantum resonances from angle-resolved elastic scattering.
    Paliwal P; Blech A; Koch CP; Narevicius E
    Nat Commun; 2021 Dec; 12(1):7249. PubMed ID: 34903758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observation of Fano resonances in all-dielectric nanoparticle oligomers.
    Chong KE; Hopkins B; Staude I; Miroshnichenko AE; Dominguez J; Decker M; Neshev DN; Brener I; Kivshar YS
    Small; 2014 May; 10(10):1985-90. PubMed ID: 24616191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topological Fano Resonances.
    Zangeneh-Nejad F; Fleury R
    Phys Rev Lett; 2019 Jan; 122(1):014301. PubMed ID: 31012649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport properties of an Aharonov-Bohm ring with strong interdot Coulomb interaction.
    Liu YS; Chen H; Yang XF
    J Phys Condens Matter; 2007 Jun; 19(24):246201. PubMed ID: 21694045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fano interference governs wave transport in disordered systems.
    Poddubny AN; Rybin MV; Limonov MF; Kivshar YS
    Nat Commun; 2012 Jun; 3():914. PubMed ID: 22735442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings.
    Liu SD; Yang Z; Liu RP; Li XY
    ACS Nano; 2012 Jul; 6(7):6260-71. PubMed ID: 22680404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microwave study of quantum n-disk scattering.
    Lu W; Viola L; Pance K; Rose M; Sridhar S
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Apr; 61(4 Pt A):3652-63. PubMed ID: 11088143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geometry-dependent scattering through quantum billiards: experiment and theory.
    Blomquist T; Schanze H; Zozoulenko IV; Stöckmann HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 2):026217. PubMed ID: 12241277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the Fano Line Shape of Single Molecule Electroluminescence Induced by a Scanning Tunneling Microscope.
    Nian LL; Wang Y; Lü JT
    Nano Lett; 2018 Nov; 18(11):6826-6831. PubMed ID: 30335393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Independently tunable double Fano resonances in asymmetric MIM waveguide structure.
    Qi J; Chen Z; Chen J; Li Y; Qiang W; Xu J; Sun Q
    Opt Express; 2014 Jun; 22(12):14688-95. PubMed ID: 24977564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic forces and localized resonances in electron transfer through quantum rings.
    Poniedziałek MR; Szafran B
    J Phys Condens Matter; 2010 Nov; 22(46):465801. PubMed ID: 21403375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fano resonances as a probe of phase coherence in quantum dots.
    Clerk AA; Waintal X; Brouwer PW
    Phys Rev Lett; 2001 May; 86(20):4636-9. PubMed ID: 11384302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generalized multi-terminal decoherent transport: recursive algorithms and applications to SASER and giant magnetoresistance.
    Cattena CJ; Fernández-Alcázar LJ; Bustos-Marún RA; Nozaki D; Pastawski HM
    J Phys Condens Matter; 2014 Aug; 26(34):345304. PubMed ID: 25105444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Communication: Feshbach resonances in the water molecule revealed by state-selective spectroscopy.
    Grechko M; Maksyutenko P; Rizzo TR; Boyarkin OV
    J Chem Phys; 2010 Aug; 133(8):081103. PubMed ID: 20815552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.