These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 15169099)

  • 1. Long-time evolution of a drop size distribution by coalescence in a linear flow.
    Ismail AE; Loewenberg M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 2):046307. PubMed ID: 15169099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of emulsion drop-size distribution upon coalescence in simple shear flow: a population balance study.
    Klink IM; Phillips RJ; Dungan SR
    J Colloid Interface Sci; 2011 Jan; 353(2):467-75. PubMed ID: 20970810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effect of Slight Deformation on Thermocapillary-Driven Droplet Coalescence and Growth.
    Rother MA; Davis RH
    J Colloid Interface Sci; 1999 Jun; 214(2):297-318. PubMed ID: 10339370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coalescence of drops with tangentially mobile interfaces: effects of ambient flow.
    Santoro P; Loewenberg M
    Ann N Y Acad Sci; 2009 Apr; 1161():277-91. PubMed ID: 19426326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coalescence of repelling colloidal droplets: a route to monodisperse populations.
    Roger K; Botet R; Cabane B
    Langmuir; 2013 May; 29(19):5689-700. PubMed ID: 23570451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping coalescence of micron-sized drops and bubbles.
    Berry JD; Dagastine RR
    J Colloid Interface Sci; 2017 Feb; 487():513-522. PubMed ID: 27816870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The drop size in membrane emulsification determined from the balance of capillary and hydrodynamic forces.
    Christov NC; Danov KD; Danova DK; Kralchevsky PA
    Langmuir; 2008 Feb; 24(4):1397-410. PubMed ID: 17963414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hindered and enhanced coalescence of drops in stokes flows.
    Nemer MB; Chen X; Papadopoulos DH; Bławzdziewicz J; Loewenberg M
    Phys Rev Lett; 2004 Mar; 92(11):114501. PubMed ID: 15089142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-Contact Motion of Surfactant-Covered Spherical Drops: Ionic Surfactant.
    Blawzdziewicz J; Cristini V; Loewenberg M
    J Colloid Interface Sci; 1999 Mar; 211(2):355-366. PubMed ID: 10049551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Condensation on surface energy gradient shifts drop size distribution toward small drops.
    Macner AM; Daniel S; Steen PH
    Langmuir; 2014 Feb; 30(7):1788-98. PubMed ID: 24490757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Droplet growth by coalescence in binary fluid mixtures.
    Burkhart BE; Gopalkrishnan PV; Hudson SD; Jamieson AM; Rother MA; Davis RH
    Phys Rev Lett; 2001 Aug; 87(9):098304. PubMed ID: 11531604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Review on the Coalescence of Confined Drops with a Focus on Scaling Laws for the Growth of the Liquid Bridge.
    Ryu S; Zhang H; Anuta UJ
    Micromachines (Basel); 2023 Oct; 14(11):. PubMed ID: 38004903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shear-induced coalescence of oil-in-water Pickering emulsions.
    Whitby CP; Fischer FE; Fornasiero D; Ralston J
    J Colloid Interface Sci; 2011 Sep; 361(1):170-7. PubMed ID: 21658702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the growth mechanisms of nanoemulsions.
    Nazarzadeh E; Anthonypillai T; Sajjadi S
    J Colloid Interface Sci; 2013 May; 397():154-62. PubMed ID: 23452515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamic resistance of single confined moving drops in rectangular microchannels.
    Vanapalli SA; Banpurkar AG; van den Ende D; Duits MH; Mugele F
    Lab Chip; 2009 Apr; 9(7):982-90. PubMed ID: 19294311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reflectivity-based evaluation of the coalescence of two condensing drops and shape evolution of the coalesced drop.
    Gokhale SJ; DasGupta S; Plawsky JL; Wayner PC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 1):051610. PubMed ID: 15600631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrodynamic interactions suppress deformation of suspension drops in Poiseuille flow.
    Sadlej K; Wajnryb E; Ekiel-Jezewska ML
    J Chem Phys; 2010 Aug; 133(5):054901. PubMed ID: 20707548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surfactant effects on thermocapillary interactions of deformable drops.
    Rother MA
    J Colloid Interface Sci; 2007 Dec; 316(2):699-711. PubMed ID: 17889896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coalescence of Microscopic Polymeric Drops: Effect of Drop Impact Velocities.
    Sivasankar VS; Etha SA; Hines DR; Das S
    Langmuir; 2021 Nov; 37(45):13512-13526. PubMed ID: 34724618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.