These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 15169152)

  • 1. Reactive particles in random flows.
    Károlyi G; Tél T; de Moura AP; Grebogi C
    Phys Rev Lett; 2004 Apr; 92(17):174101. PubMed ID: 15169152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical and biological activity in three-dimensional flows.
    de Moura AP; Grebogi C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026218. PubMed ID: 15447576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability of attractors formed by inertial particles in open chaotic flows.
    Do Y; Lai YC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036203. PubMed ID: 15524608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Population dynamics advected by chaotic flows: A discrete-time map approach.
    Lopez C; Hernandez-Garcia E; Piro O; Vulpiani A; Zambianchi E
    Chaos; 2001 Jun; 11(2):397-403. PubMed ID: 12779474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Universality in active chaos.
    Tél T; Nishikawa T; Motter AE; Grebogi C; Toroczkai Z
    Chaos; 2004 Mar; 14(1):72-8. PubMed ID: 15003046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite-size effects on active chaotic advection.
    Nishikawa T; Toroczkai Z; Grebogi C; Tél T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026216. PubMed ID: 11863641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactive dynamics of inertial particles in nonhyperbolic chaotic flows.
    Motter AE; Lai YC; Grebogi C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056307. PubMed ID: 14682884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reacting particles in open chaotic flows.
    de Moura AP
    Phys Rev Lett; 2011 Dec; 107(27):274501. PubMed ID: 22243312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalization of the JTZ model to open plane wakes.
    Wu ZB
    Chaos; 2010 Mar; 20(1):013122. PubMed ID: 20370277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aggregation and fragmentation dynamics of inertial particles in chaotic flows.
    Zahnow JC; Vilela RD; Feudel U; Tél T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 2):055301. PubMed ID: 18643122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chaos-induced coherence in two independent food chains.
    Auyuanet A; Martí AC; Montagne R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031920. PubMed ID: 16241495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coexistence of inertial competitors in chaotic flows.
    Benczik IJ; Károlyi G; Scheuring I; Tél T
    Chaos; 2006 Dec; 16(4):043110. PubMed ID: 17199388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chaotic stirring in quasi-turbulent flows.
    Lekien F; Coulliette C
    Philos Trans A Math Phys Eng Sci; 2007 Dec; 365(1861):3061-84. PubMed ID: 17872361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superpersistent chaotic transients in physical space: advective dynamics of inertial particles in open chaotic flows under noise.
    Do Y; Lai YC
    Phys Rev Lett; 2003 Nov; 91(22):224101. PubMed ID: 14683241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamical pattern formation in two-dimensional fluids and Landau pole bifurcation.
    Ogawa S; Barré J; Morita H; Yamaguchi YY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063007. PubMed ID: 25019879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Steady two-layer flows over an obstacle.
    Dias F; Vanden-Broeck JM
    Philos Trans A Math Phys Eng Sci; 2002 Oct; 360(1799):2137-54. PubMed ID: 12804231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite-size effects on open chaotic advection.
    Vilela RD; de Moura AP; Grebogi C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026302. PubMed ID: 16605449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport of finite-sized particles in chaotic flow.
    Ouellette NT; O'Malley PJ; Gollub JP
    Phys Rev Lett; 2008 Oct; 101(17):174504. PubMed ID: 18999753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of a density oscillator.
    Kano T; Kinoshita S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046217. PubMed ID: 19905425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advective coalescence in chaotic flows.
    Nishikawa T; Toroczkai Z; Grebogi C
    Phys Rev Lett; 2001 Jul; 87(3):038301. PubMed ID: 11461595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.