These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 1516938)

  • 1. A movement pattern generator model using artificial neural networks.
    Srinivasan S; Gander RE; Wood HC
    IEEE Trans Biomed Eng; 1992 Jul; 39(7):716-22. PubMed ID: 1516938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An artificial neural network that utilizes hip joint actuations to control bifurcations and chaos in a passive dynamic bipedal walking model.
    Kurz MJ; Stergiou N
    Biol Cybern; 2005 Sep; 93(3):213-21. PubMed ID: 16059784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Central pattern generators for locomotion control in animals and robots: a review.
    Ijspeert AJ
    Neural Netw; 2008 May; 21(4):642-53. PubMed ID: 18555958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Traveling-wave pattern generator controls movement and organization of sensory feedback in a spinal cord model.
    Kaske A; Winberg G; Cöster J
    Biol Cybern; 2003 Jan; 88(1):11-9. PubMed ID: 12545279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A generalized locomotion CPG architecture based on oscillatory building blocks.
    Yang Z; França FM
    Biol Cybern; 2003 Jul; 89(1):34-42. PubMed ID: 12836031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Symmetry in locomotor central pattern generators and animal gaits.
    Golubitsky M; Stewart I; Buono PL; Collins JJ
    Nature; 1999 Oct; 401(6754):693-5. PubMed ID: 10537106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fitting probability distributions to animal movement trajectories: using artificial neural networks to link distance, resources, and memory.
    Dalziel BD; Morales JM; Fryxell JM
    Am Nat; 2008 Aug; 172(2):248-58. PubMed ID: 18598199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional electrical stimulation controlled by artificial neural networks: pilot experiments with simple movements are promising for rehabilitation applications.
    Ferrante S; Pedrocchi A; Iannò M; De Momi E; Ferrarin M; Ferrigno G
    Funct Neurol; 2004; 19(4):243-52. PubMed ID: 15776793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards a general neural controller for quadrupedal locomotion.
    Maufroy C; Kimura H; Takase K
    Neural Netw; 2008 May; 21(4):667-81. PubMed ID: 18490136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural systems for control of voluntary action--a hypothesis.
    Hikosaka O
    Adv Biophys; 1998; 35():81-102. PubMed ID: 9949766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural network estimation of balance control during locomotion.
    Hahn ME; Farley AM; Lin V; Chou LS
    J Biomech; 2005 Apr; 38(4):717-24. PubMed ID: 15713292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discriminating signal from noise: recognition of a movement-based animal display by artificial neural networks.
    Peters RA; Davis CJ
    Behav Processes; 2006 Mar; 72(1):52-64. PubMed ID: 16412586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A reflexive neural network for dynamic biped walking control.
    Geng T; Porr B; Wörgötter F
    Neural Comput; 2006 May; 18(5):1156-96. PubMed ID: 16595061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From swimming to walking: a single basic network for two different behaviors.
    Bem T; Cabelguen JM; Ekeberg O; Grillner S
    Biol Cybern; 2003 Feb; 88(2):79-90. PubMed ID: 12567223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patterns of mechanical energy change in tetrapod gait: pendula, springs and work.
    Biewener AA
    J Exp Zool A Comp Exp Biol; 2006 Nov; 305(11):899-911. PubMed ID: 17029267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling biological motor control for human locomotion with functional electrical stimulation.
    Zhang D; Zhu K
    Biol Cybern; 2007 Jan; 96(1):79-97. PubMed ID: 17043880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generating ROC curves for artificial neural networks.
    Woods K; Bowyer KW
    IEEE Trans Med Imaging; 1997 Jun; 16(3):329-37. PubMed ID: 9184895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinematic control of walking.
    Lacquaniti F; Ivanenko YP; Zago M
    Arch Ital Biol; 2002 Oct; 140(4):263-72. PubMed ID: 12228979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards representation of a perceptual color manifold using associative memory for color constancy.
    Seow MJ; Asari VK
    Neural Netw; 2009 Jan; 22(1):91-9. PubMed ID: 18995987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-organization of distributedly represented multiple behavior schemata in a mirror system: reviews of robot experiments using RNNPB.
    Tani J; Ito M; Sugita Y
    Neural Netw; 2004; 17(8-9):1273-89. PubMed ID: 15555866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.