These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 15169518)
1. High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Schaller RD; Klimov VI Phys Rev Lett; 2004 May; 92(18):186601. PubMed ID: 15169518 [TBL] [Abstract][Full Text] [Related]
2. New aspects of carrier multiplication in semiconductor nanocrystals. McGuire JA; Joo J; Pietryga JM; Schaller RD; Klimov VI Acc Chem Res; 2008 Dec; 41(12):1810-9. PubMed ID: 19006342 [TBL] [Abstract][Full Text] [Related]
3. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals. Kanemitsu Y Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584 [TBL] [Abstract][Full Text] [Related]
4. Mechanisms for photogeneration and recombination of multiexcitons in semiconductor nanocrystals: implications for lasing and solar energy conversion. Klimov VI J Phys Chem B; 2006 Aug; 110(34):16827-45. PubMed ID: 16927970 [TBL] [Abstract][Full Text] [Related]
5. High-efficiency carrier multiplication and ultrafast charge separation in semiconductor nanocrystals studied via time-resolved photoluminescence. Schaller RD; Sykora M; Jeong S; Klimov VI J Phys Chem B; 2006 Dec; 110(50):25332-8. PubMed ID: 17165979 [TBL] [Abstract][Full Text] [Related]
6. Multiexciton annihilation and dissociation in quantum confined semiconductor nanocrystals. Zhu H; Yang Y; Lian T Acc Chem Res; 2013 Jun; 46(6):1270-9. PubMed ID: 23148478 [TBL] [Abstract][Full Text] [Related]
8. Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics. Ten Cate S; Sandeep CS; Liu Y; Law M; Kinge S; Houtepen AJ; Schins JM; Siebbeles LD Acc Chem Res; 2015 Feb; 48(2):174-81. PubMed ID: 25607377 [TBL] [Abstract][Full Text] [Related]
9. Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals. Klimov VI Annu Rev Phys Chem; 2007; 58():635-73. PubMed ID: 17163837 [TBL] [Abstract][Full Text] [Related]
10. Exciton multiplication from first principles. Jaeger HM; Hyeon-Deuk K; Prezhdo OV Acc Chem Res; 2013 Jun; 46(6):1280-9. PubMed ID: 23459543 [TBL] [Abstract][Full Text] [Related]
11. Auger Up-Conversion of Low-Intensity Infrared Light in Engineered Quantum Dots. Makarov NS; Lin Q; Pietryga JM; Robel I; Klimov VI ACS Nano; 2016 Dec; 10(12):10829-10841. PubMed ID: 27936587 [TBL] [Abstract][Full Text] [Related]
12. Effect of air exposure on surface properties, electronic structure, and carrier relaxation in PbSe nanocrystals. Sykora M; Koposov AY; McGuire JA; Schulze RK; Tretiak O; Pietryga JM; Klimov VI ACS Nano; 2010 Apr; 4(4):2021-34. PubMed ID: 20369900 [TBL] [Abstract][Full Text] [Related]
13. Exploring exciton relaxation and multiexciton generation in PbSe nanocrystals using hyperspectral near-IR probing. Gdor I; Sachs H; Roitblat A; Strasfeld DB; Bawendi MG; Ruhman S ACS Nano; 2012 Apr; 6(4):3269-77. PubMed ID: 22390473 [TBL] [Abstract][Full Text] [Related]
14. Direct and inverse auger processes in InAs nanocrystals: can the decay signature of a trion be mistaken for carrier multiplication? Califano M ACS Nano; 2009 Sep; 3(9):2706-14. PubMed ID: 19689121 [TBL] [Abstract][Full Text] [Related]
15. Low-temperature approach to high-yield and reproducible syntheses of high-quality small-sized PbSe colloidal nanocrystals for photovoltaic applications. Ouyang J; Schuurmans C; Zhang Y; Nagelkerke R; Wu X; Kingston D; Wang ZY; Wilkinson D; Li C; Leek DM; Tao Y; Yu K ACS Appl Mater Interfaces; 2011 Feb; 3(2):553-65. PubMed ID: 21244024 [TBL] [Abstract][Full Text] [Related]
16. Comparison of carrier multiplication yields in PbS and PbSe nanocrystals: the role of competing energy-loss processes. Stewart JT; Padilha LA; Qazilbash MM; Pietryga JM; Midgett AG; Luther JM; Beard MC; Nozik AJ; Klimov VI Nano Lett; 2012 Feb; 12(2):622-8. PubMed ID: 22148950 [TBL] [Abstract][Full Text] [Related]
17. Carrier multiplication in semiconductor nanocrystals detected by energy transfer to organic dye molecules. Xiao J; Wang Y; Hua Z; Wang X; Zhang C; Xiao M Nat Commun; 2012; 3():1170. PubMed ID: 23132020 [TBL] [Abstract][Full Text] [Related]
18. Exciton multiplication and relaxation dynamics in quantum dots: applications to ultrahigh-efficiency solar photon conversion. Nozik AJ Inorg Chem; 2005 Oct; 44(20):6893-9. PubMed ID: 16180844 [TBL] [Abstract][Full Text] [Related]
19. Third generation photovoltaics based on multiple exciton generation in quantum confined semiconductors. Beard MC; Luther JM; Semonin OE; Nozik AJ Acc Chem Res; 2013 Jun; 46(6):1252-60. PubMed ID: 23113604 [TBL] [Abstract][Full Text] [Related]
20. Non-Poissonian exciton populations in semiconductor nanocrystals via carrier multiplication. Schaller RD; Klimov VI Phys Rev Lett; 2006 Mar; 96(9):097402. PubMed ID: 16606314 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]