These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 15169530)
1. Excitonic energy shell structure of self-assembled InGaAs/GaAs quantum dots. Raymond S; Studenikin S; Sachrajda A; Wasilewski Z; Cheng SJ; Sheng W; Hawrylak P; Babinski A; Potemski M; Ortner G; Bayer M Phys Rev Lett; 2004 May; 92(18):187402. PubMed ID: 15169530 [TBL] [Abstract][Full Text] [Related]
2. Quantitative excited state spectroscopy of a single InGaAs quantum dot molecule through multi-million-atom electronic structure calculations. Usman M; Tan YH; Ryu H; Ahmed SS; Krenner HJ; Boykin TB; Klimeck G Nanotechnology; 2011 Aug; 22(31):315709. PubMed ID: 21737873 [TBL] [Abstract][Full Text] [Related]
3. Single-dot spectroscopy via elastic single-electron tunneling through a pair of coupled quantum dots. Ota T; Ono K; Stopa M; Hatano T; Tarucha S; Song HZ; Nakata Y; Miyazawa T; Ohshima T; Yokoyama N Phys Rev Lett; 2004 Aug; 93(6):066801. PubMed ID: 15323648 [TBL] [Abstract][Full Text] [Related]
4. Fine structure of excitons in InAs/GaAs coupled auantum dots: a sensitive test of electronic coupling. Ortner G; Bayer M; Larionov A; Timofeev VB; Forchel A; Lyanda-Geller YB; Reinecke TL; Hawrylak P; Fafard S; Wasilewski Z Phys Rev Lett; 2003 Feb; 90(8):086404. PubMed ID: 12633447 [TBL] [Abstract][Full Text] [Related]
5. Four-wave mixing dynamics of excitons in InGaAs self-assembled quantum dots. Borri P; Langbein W J Phys Condens Matter; 2007 Jul; 19(29):295201. PubMed ID: 21483053 [TBL] [Abstract][Full Text] [Related]
6. A theoretical study of exciton energy levels in laterally coupled quantum dots. Barticevic Z; Pacheco M; Duque CA; Oliveira LE J Phys Condens Matter; 2009 Oct; 21(40):405801. PubMed ID: 21832423 [TBL] [Abstract][Full Text] [Related]
7. Valence band offset, strain and shape effects on confined states in self-assembled InAs/InP and InAs/GaAs quantum dots. Zieliński M J Phys Condens Matter; 2013 Nov; 25(46):465301. PubMed ID: 24129261 [TBL] [Abstract][Full Text] [Related]
8. Excitonic absorption in a quantum Dot. Hawrylak P; Narvaez GA; Bayer M; Forchel A Phys Rev Lett; 2000 Jul; 85(2):389-92. PubMed ID: 10991290 [TBL] [Abstract][Full Text] [Related]
9. Hidden symmetries in the energy levels of excitonic 'artificial atoms'. Bayer M; Stern O; Hawrylak P; Fafard S; Forchel A Nature; 2000 Jun; 405(6789):923-6. PubMed ID: 10879527 [TBL] [Abstract][Full Text] [Related]
10. Modeling of carrier dynamics in InGaAs/GaAs self-assembled quantum dot lasers. Kashiri M; Asgari A Appl Opt; 2016 Mar; 55(8):2042-8. PubMed ID: 26974800 [TBL] [Abstract][Full Text] [Related]
12. Universal recovery of the energy-level degeneracy of bright excitons in InGaAs quantum dots without a structure symmetry. Trotta R; Zallo E; Ortix C; Atkinson P; Plumhof JD; van den Brink J; Rastelli A; Schmidt OG Phys Rev Lett; 2012 Oct; 109(14):147401. PubMed ID: 23083282 [TBL] [Abstract][Full Text] [Related]
13. Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities. Calic M; Gallo P; Felici M; Atlasov KA; Dwir B; Rudra A; Biasiol G; Sorba L; Tarel G; Savona V; Kapon E Phys Rev Lett; 2011 Jun; 106(22):227402. PubMed ID: 21702633 [TBL] [Abstract][Full Text] [Related]
14. Spatially resolved In and As distributions in InGaAs/GaP and InGaAs/GaAs quantum dot systems. Shen J; Song Y; Lee ML; Cha JJ Nanotechnology; 2014 Nov; 25(46):465702. PubMed ID: 25354930 [TBL] [Abstract][Full Text] [Related]
15. Magnetic field effect on the energy levels of an exciton in a GaAs quantum dot: Application for excitonic lasers. Jahan KL; Boda A; Shankar IV; Raju CN; Chatterjee A Sci Rep; 2018 Mar; 8(1):5073. PubMed ID: 29567977 [TBL] [Abstract][Full Text] [Related]
16. Control of vertically coupled InGaAs/GaAs quantum dots with electric fields. Ortner G; Bayer M; Lyanda-Geller Y; Reinecke TL; Kress A; Reithmaier JP; Forchel A Phys Rev Lett; 2005 Apr; 94(15):157401. PubMed ID: 15904185 [TBL] [Abstract][Full Text] [Related]
17. Coherently-enabled environmental control of optics and energy transfer pathways of hybrid quantum dot-metallic nanoparticle systems. Hatef A; Sadeghi SM; Fortin-Deschênes S; Boulais E; Meunier M Opt Express; 2013 Mar; 21(5):5643-53. PubMed ID: 23482138 [TBL] [Abstract][Full Text] [Related]
18. Transient coherent nonlinear spectroscopy of single quantum dots. Langbein W; Patton B J Phys Condens Matter; 2007 Jul; 19(29):295203. PubMed ID: 21483055 [TBL] [Abstract][Full Text] [Related]
19. Shape control of InGaAs nanostructures on nominal GaAs(001): dashes and dots. Kim DJ; Yang H Nanotechnology; 2008 Nov; 19(47):475601. PubMed ID: 21836276 [TBL] [Abstract][Full Text] [Related]
20. Electrical control of the exciton-biexciton splitting in self-assembled InGaAs quantum dots. Kaniber M; Huck MF; Müller K; Clark EC; Troiani F; Bichler M; Krenner HJ; Finley JJ Nanotechnology; 2011 Aug; 22(32):325202. PubMed ID: 21772067 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]