These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
467 related articles for article (PubMed ID: 15169621)
1. NMDA and AMPA receptors mediate intracellular calcium increase in rat cortical astrocytes. Hu B; Sun SG; Tong ET Acta Pharmacol Sin; 2004 Jun; 25(6):714-20. PubMed ID: 15169621 [TBL] [Abstract][Full Text] [Related]
2. Stimulation of N-methyl-D-aspartate receptors, AMPA receptors or metabotropic glutamate receptors leads to rapid internalization of AMPA receptors in cultured nucleus accumbens neurons. Mangiavacchi S; Wolf ME Eur J Neurosci; 2004 Aug; 20(3):649-57. PubMed ID: 15255976 [TBL] [Abstract][Full Text] [Related]
3. Regulation of the maturation of osteoblasts and osteoclastogenesis by glutamate. Lin TH; Yang RS; Tang CH; Wu MY; Fu WM Eur J Pharmacol; 2008 Jul; 589(1-3):37-44. PubMed ID: 18538763 [TBL] [Abstract][Full Text] [Related]
4. Differential effects of NMDA and AMPA/kainate receptor antagonists on nitric oxide production in rat brain following intrahippocampal injection. Radenovic L; Selakovic V Brain Res Bull; 2005 Sep; 67(1-2):133-41. PubMed ID: 16140172 [TBL] [Abstract][Full Text] [Related]
5. Stimulation of NMDA and AMPA glutamate receptors elicits distinct concentration dynamics of nitric oxide in rat hippocampal slices. Frade JG; Barbosa RM; Laranjinha J Hippocampus; 2009 Jul; 19(7):603-11. PubMed ID: 19115375 [TBL] [Abstract][Full Text] [Related]
6. Induction of increased intracellular calcium in astrocytes by glutamate through activating NMDA and AMPA receptors. Zhang Q; Hu B; Sun S; Tong E J Huazhong Univ Sci Technolog Med Sci; 2003; 23(3):254-7. PubMed ID: 14526426 [TBL] [Abstract][Full Text] [Related]
7. Ca(2+) influx through AMPA or kainate receptors alone is sufficient to initiate excitotoxicity in cultured oligodendrocytes. Alberdi E; Sánchez-Gómez MV; Marino A; Matute C Neurobiol Dis; 2002 Mar; 9(2):234-43. PubMed ID: 11895374 [TBL] [Abstract][Full Text] [Related]
8. Calcium-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate receptors mediate development, but not maintenance, of secondary allodynia evoked by first-degree burn in the rat. Jones TL; Sorkin LS J Pharmacol Exp Ther; 2004 Jul; 310(1):223-9. PubMed ID: 15007101 [TBL] [Abstract][Full Text] [Related]
9. Glutamate, NMDA, and AMPA induced changes in extracellular space volume and tortuosity in the rat spinal cord. Vargová L; Jendelová P; Chvátal A; Syková E J Cereb Blood Flow Metab; 2001 Sep; 21(9):1077-89. PubMed ID: 11524612 [TBL] [Abstract][Full Text] [Related]
10. Dynamic interaction of stargazin-like TARPs with cycling AMPA receptors at synapses. Tomita S; Fukata M; Nicoll RA; Bredt DS Science; 2004 Mar; 303(5663):1508-11. PubMed ID: 15001777 [TBL] [Abstract][Full Text] [Related]
11. Up-regulation of N-methyl-D-aspartate receptors on cultured cortical neurons after exposure to antagonists. Williams K; Dichter MA; Molinoff PB Mol Pharmacol; 1992 Jul; 42(1):147-51. PubMed ID: 1353248 [TBL] [Abstract][Full Text] [Related]
12. Depressor responses to L-proline microinjected into the rat ventrolateral medulla are mediated by ionotropic excitatory amino acid receptors. Takemoto Y Auton Neurosci; 2005 Jun; 120(1-2):108-12. PubMed ID: 15964784 [TBL] [Abstract][Full Text] [Related]
13. Dendritic glutamate-induced bursting in prefrontal pyramidal cells: role of NMDA and non-NMDA receptors. Zhang XX; Shi WX Zhongguo Yao Li Xue Bao; 1999 Dec; 20(12):1125-31. PubMed ID: 11189202 [TBL] [Abstract][Full Text] [Related]
14. AMPA receptor protein expression and function in astrocytes cultured from hippocampus. Fan D; Grooms SY; Araneda RC; Johnson AB; Dobrenis K; Kessler JA; Zukin RS J Neurosci Res; 1999 Aug; 57(4):557-71. PubMed ID: 10440906 [TBL] [Abstract][Full Text] [Related]
15. Ionotropic glutamate receptor activation increases intracellular calcium in prolactin-releasing cells of the adenohypophysis. Bellinger FP; Fox BK; Chan WY; Davis LK; Andres MA; Hirano T; Grau EG; Cooke IM Am J Physiol Endocrinol Metab; 2006 Dec; 291(6):E1188-96. PubMed ID: 16822959 [TBL] [Abstract][Full Text] [Related]
16. Mechanisms of sodium azide-induced changes in intracellular calcium concentration in rat primary cortical neurons. Marino S; Marani L; Nazzaro C; Beani L; Siniscalchi A Neurotoxicology; 2007 May; 28(3):622-9. PubMed ID: 17316809 [TBL] [Abstract][Full Text] [Related]
17. Differential mechanisms of Ca2+ responses in glial cells evoked by exogenous and endogenous glutamate in rat hippocampus. Latour I; Gee CE; Robitaille R; Lacaille JC Hippocampus; 2001; 11(2):132-45. PubMed ID: 11345120 [TBL] [Abstract][Full Text] [Related]
18. Isoflurane preconditioning decreases glutamate receptor overactivation-induced Purkinje neuronal injury in rat cerebellar slices. Zheng S; Zuo Z Brain Res; 2005 Aug; 1054(2):143-51. PubMed ID: 16081051 [TBL] [Abstract][Full Text] [Related]
19. Characterization of ionotropic glutamate receptor-mediated nitric oxide production in vivo in rats. Bhardwaj A; Northington FJ; Ichord RN; Hanley DF; Traystman RJ; Koehler RC Stroke; 1997 Apr; 28(4):850-6; discussion 856-7. PubMed ID: 9099207 [TBL] [Abstract][Full Text] [Related]
20. Response properties of antral mechanosensitive afferent fibers and effects of ionotropic glutamate receptor antagonists. Sengupta JN; Petersen J; Peles S; Shaker R Neuroscience; 2004; 125(3):711-23. PubMed ID: 15099685 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]