BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 15169769)

  • 1. Single unpaired nucleotides facilitate HIV-1 reverse transcriptase displacement synthesis through duplex RNA.
    Lanciault C; Champoux JJ
    J Biol Chem; 2004 Jul; 279(31):32252-61. PubMed ID: 15169769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of unpaired nucleotides within HIV-1 genomic secondary structures on pausing and strand transfer.
    Lanciault C; Champoux JJ
    J Biol Chem; 2005 Jan; 280(4):2413-23. PubMed ID: 15542863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Template-directed pausing of DNA synthesis by HIV-1 reverse transcriptase during polymerization of HIV-1 sequences in vitro.
    Klarmann GJ; Schauber CA; Preston BD
    J Biol Chem; 1993 May; 268(13):9793-802. PubMed ID: 7683663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substitutions at Phe61 in the beta3-beta4 hairpin of HIV-1 reverse transcriptase reveal a role for the Fingers subdomain in strand displacement DNA synthesis.
    Fisher TS; Darden T; Prasad VR
    J Mol Biol; 2003 Jan; 325(3):443-59. PubMed ID: 12498795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of template RNA structure on elongation by HIV-1 reverse transcriptase.
    Klasens BI; Huthoff HT; Das AT; Jeeninga RE; Berkhout B
    Biochim Biophys Acta; 1999 Mar; 1444(3):355-70. PubMed ID: 10095059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strand displacement synthesis of the long terminal repeats by HIV reverse transcriptase.
    Fuentes GM; Rodríguez-Rodríguez L; Palaniappan C; Fay PJ; Bambara RA
    J Biol Chem; 1996 Jan; 271(4):1966-71. PubMed ID: 8567645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structures of an N-terminal fragment from Moloney murine leukemia virus reverse transcriptase complexed with nucleic acid: functional implications for template-primer binding to the fingers domain.
    Najmudin S; Coté ML; Sun D; Yohannan S; Montano SP; Gu J; Georgiadis MM
    J Mol Biol; 2000 Feb; 296(2):613-32. PubMed ID: 10669612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Misincorporation by HIV-1 reverse transcriptase promotes recombination via strand transfer synthesis.
    Palaniappan C; Wisniewski M; Wu W; Fay PJ; Bambara RA
    J Biol Chem; 1996 Sep; 271(37):22331-8. PubMed ID: 8798393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complex formation between a putative 66-residue thumb domain of bacterial reverse transcriptase RT-Ec86 and the primer recognition RNA.
    Inouye M; Ke H; Yashio A; Yamanaka K; Nariya H; Shimamoto T; Inouye S
    J Biol Chem; 2004 Dec; 279(49):50735-42. PubMed ID: 15371452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into DNA polymerization mechanisms from structure and function analysis of HIV-1 reverse transcriptase.
    Patel PH; Jacobo-Molina A; Ding J; Tantillo C; Clark AD; Raag R; Nanni RG; Hughes SH; Arnold E
    Biochemistry; 1995 Apr; 34(16):5351-63. PubMed ID: 7537090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural alterations in the DNA ahead of the primer terminus during displacement synthesis by reverse transcriptases.
    Winshell J; Champoux JJ
    J Mol Biol; 2001 Mar; 306(5):931-43. PubMed ID: 11237609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between plus strand DNA synthesis removal of downstream segments of RNA by human immunodeficiency virus, murine leukemia virus and avian myeloblastoma virus reverse transcriptases.
    Fuentes GM; Fay PJ; Bambara RA
    Nucleic Acids Res; 1996 May; 24(9):1719-26. PubMed ID: 8649991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of RNA template to a complex of HIV-1 reverse transcriptase/primer/template.
    Canard B; Sarfati R; Richardson CC
    Proc Natl Acad Sci U S A; 1997 Oct; 94(21):11279-84. PubMed ID: 9326600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of HIV-1 reverse transcriptase. Termination of processive synthesis on a natural DNA template is influenced by the sequence of the template-primer stem.
    Abbotts J; Bebenek K; Kunkel TA; Wilson SH
    J Biol Chem; 1993 May; 268(14):10312-23. PubMed ID: 7683674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Requirements for DNA unpairing during displacement synthesis by HIV-1 reverse transcriptase.
    Winshell J; Paulson BA; Buelow BD; Champoux JJ
    J Biol Chem; 2004 Dec; 279(51):52924-33. PubMed ID: 15465813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Helix structure and ends of RNA/DNA hybrids direct the cleavage specificity of HIV-1 reverse transcriptase RNase H.
    Palaniappan C; Fuentes GM; Rodríguez-Rodríguez L; Fay PJ; Bambara RA
    J Biol Chem; 1996 Jan; 271(4):2063-70. PubMed ID: 8567660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human immunodeficiency virus 1 reverse transcriptase. Template binding, processivity, strand displacement synthesis, and template switching.
    Huber HE; McCoy JM; Seehra JS; Richardson CC
    J Biol Chem; 1989 Mar; 264(8):4669-78. PubMed ID: 2466838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein-nucleic acid interactions and DNA conformation in a complex of human immunodeficiency virus type 1 reverse transcriptase with a double-stranded DNA template-primer.
    Ding J; Hughes SH; Arnold E
    Biopolymers; 1997; 44(2):125-38. PubMed ID: 9354757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of strand displacement synthesis by Moloney murine leukemia virus reverse transcriptase: mechanistic implications.
    Whiting SH; Champoux JJ
    J Mol Biol; 1998 May; 278(3):559-77. PubMed ID: 9600839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strand displacement synthesis capability of Moloney murine leukemia virus reverse transcriptase.
    Whiting SH; Champoux JJ
    J Virol; 1994 Aug; 68(8):4747-58. PubMed ID: 7518525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.