These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 15169780)

  • 1. Investigation of the cyclobutane pyrimidine dimer (CPD) photolyase DNA recognition mechanism by NMR analyses.
    Torizawa T; Ueda T; Kuramitsu S; Hitomi K; Todo T; Iwai S; Morikawa K; Shimada I
    J Biol Chem; 2004 Jul; 279(31):32950-6. PubMed ID: 15169780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and characterization of a second chromophore of DNA photolyase from Thermus thermophilus HB27.
    Ueda T; Kato A; Kuramitsu S; Terasawa H; Shimada I
    J Biol Chem; 2005 Oct; 280(43):36237-43. PubMed ID: 16118222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMR study of repair mechanism of DNA photolyase by FAD-induced paramagnetic relaxation enhancement.
    Ueda T; Kato A; Ogawa Y; Torizawa T; Kuramitsu S; Iwai S; Terasawa H; Shimada I
    J Biol Chem; 2004 Dec; 279(50):52574-9. PubMed ID: 15465818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Similarities and differences between cyclobutane pyrimidine dimer photolyase and (6-4) photolyase as revealed by resonance Raman spectroscopy: Electron transfer from the FAD cofactor to ultraviolet-damaged DNA.
    Li J; Uchida T; Todo T; Kitagawa T
    J Biol Chem; 2006 Sep; 281(35):25551-9. PubMed ID: 16816385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of thermostable DNA photolyase: pyrimidine-dimer recognition mechanism.
    Komori H; Masui R; Kuramitsu S; Yokoyama S; Shibata T; Inoue Y; Miki K
    Proc Natl Acad Sci U S A; 2001 Nov; 98(24):13560-5. PubMed ID: 11707580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of archaeal photolyase from Sulfolobus tokodaii with two FAD molecules: implication of a novel light-harvesting cofactor.
    Fujihashi M; Numoto N; Kobayashi Y; Mizushima A; Tsujimura M; Nakamura A; Kawarabayasi Y; Miki K
    J Mol Biol; 2007 Jan; 365(4):903-10. PubMed ID: 17107688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme-Substrate Binding Kinetics Indicate That Photolyase Recognizes an Extrahelical Cyclobutane Thymidine Dimer.
    Schelvis JP; Zhu X; Gindt YM
    Biochemistry; 2015 Oct; 54(40):6176-85. PubMed ID: 26393415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of a photolyase bound to a CPD-like DNA lesion after in situ repair.
    Mees A; Klar T; Gnau P; Hennecke U; Eker AP; Carell T; Essen LO
    Science; 2004 Dec; 306(5702):1789-93. PubMed ID: 15576622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of distinct α-helical rearrangements of cyclobutane pyrimidine dimer photolyase upon substrate binding by Fourier transform infrared spectroscopy.
    Wijaya IM; Zhang Y; Iwata T; Yamamoto J; Hitomi K; Iwai S; Getzoff ED; Kandori H
    Biochemistry; 2013 Feb; 52(6):1019-27. PubMed ID: 23331252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional Conversion of CPD and (6-4) Photolyases by Mutation.
    Yamada D; Dokainish HM; Iwata T; Yamamoto J; Ishikawa T; Todo T; Iwai S; Getzoff ED; Kitao A; Kandori H
    Biochemistry; 2016 Aug; 55(30):4173-83. PubMed ID: 27431478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eukaryotic class II cyclobutane pyrimidine dimer photolyase structure reveals basis for improved ultraviolet tolerance in plants.
    Hitomi K; Arvai AS; Yamamoto J; Hitomi C; Teranishi M; Hirouchi T; Yamamoto K; Iwai S; Tainer JA; Hidema J; Getzoff ED
    J Biol Chem; 2012 Apr; 287(15):12060-9. PubMed ID: 22170053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA repair by photolyase: a novel substrate with low background absorption around 265 nm for transient absorption studies in the UV.
    Thiagarajan V; Villette S; Espagne A; Eker AP; Brettel K; Byrdin M
    Biochemistry; 2010 Jan; 49(2):297-303. PubMed ID: 20000331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of rice cyclobutane pyrimidine dimer photolyase into mitochondria relies on a targeting sequence located in its C-terminal internal region.
    Takahashi S; Teranishi M; Izumi M; Takahashi M; Takahashi F; Hidema J
    Plant J; 2014 Sep; 79(6):951-63. PubMed ID: 24947012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structures of an archaeal class II DNA photolyase and its complex with UV-damaged duplex DNA.
    Kiontke S; Geisselbrecht Y; Pokorny R; Carell T; Batschauer A; Essen LO
    EMBO J; 2011 Sep; 30(21):4437-49. PubMed ID: 21892138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a phosphorylation site in cyclobutane pyrimidine dimer photolyase of rice.
    Teranishi M; Nakamura K; Furukawa H; Hidema J
    Plant Physiol Biochem; 2013 Feb; 63():24-9. PubMed ID: 23220084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of real-time photorepair activity on DNA via surface plasmon resonance.
    Kizilel R; Demir E; Azizoglu S; Asimgil H; Kavakli IH; Kizilel S
    PLoS One; 2012; 7(8):e44392. PubMed ID: 22952969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Review of Spectroscopic and Biophysical-Chemical Studies of the Complex of Cyclobutane Pyrimidine Dimer Photolyase and Cryptochrome DASH with Substrate DNA.
    Schelvis JP; Gindt YM
    Photochem Photobiol; 2017 Jan; 93(1):26-36. PubMed ID: 27891613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction and inhibition of cyclobutane pyrimidine dimer photolyase in etiolated cucumber (Cucumis sativus) cotyledons after ultraviolet irradiation depends on wavelength.
    Takeuchi Y; Inoue T; Takemura K; Hada M; Takahashi S; Ioki M; Nakajima N; Kondo N
    J Plant Res; 2007 May; 120(3):365-74. PubMed ID: 17351712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of cryptochrome 3 from Arabidopsis thaliana and its implications for photolyase activity.
    Huang Y; Baxter R; Smith BS; Partch CL; Colbert CL; Deisenhofer J
    Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17701-6. PubMed ID: 17101984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recombinant production of a highly efficient photolyase from Thermus thermophilus.
    Torres-Obreque K; Gonçalves FG; Ferraro RB; Fuentes-León F; Menck CFM; Costa-Silva TA; Monteiro G; Perego P; Rangel-Yagui CO
    Biotechnol J; 2024 Jan; 19(2):e2300325. PubMed ID: 38385504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.