BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 15169945)

  • 21. Glutamine's protection against cellular injury is dependent on heat shock factor-1.
    Morrison AL; Dinges M; Singleton KD; Odoms K; Wong HR; Wischmeyer PE
    Am J Physiol Cell Physiol; 2006 Jun; 290(6):C1625-32. PubMed ID: 16436470
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phosphorylation of Drosophila heat shock transcription factor.
    Fritsch M; Wu C
    Cell Stress Chaperones; 1999 Jun; 4(2):102-17. PubMed ID: 10547060
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptomic Analysis Revealed the Common and Divergent Responses of Maize Seedling Leaves to Cold and Heat Stresses.
    Li Y; Wang X; Li Y; Zhang Y; Gou Z; Qi X; Zhang J
    Genes (Basel); 2020 Aug; 11(8):. PubMed ID: 32756433
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of heat shock protein 72 kDa and 90 kDa in human breast cancer MDA-MB-231 cells.
    Kiang JG; Gist ID; Tsokos GC
    Mol Cell Biochem; 2000 Jan; 204(1-2):169-78. PubMed ID: 10718636
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distinct stress-inducible and developmentally regulated heat shock transcription factors in Xenopus oocytes.
    Gordon S; Bharadwaj S; Hnatov A; Ali A; Ovsenek N
    Dev Biol; 1997 Jan; 181(1):47-63. PubMed ID: 9015264
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The heat shock transcription factor in liver exists in a form that has DNA binding activity but no transcriptional activity.
    Takahashi R; Heydari AR; Gutsmann A; Sabia M; Richardson A
    Biochem Biophys Res Commun; 1994 Jun; 201(2):552-8. PubMed ID: 8002986
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heat stress-induced H(2)O (2) is required for effective expression of heat shock genes in Arabidopsis.
    Volkov RA; Panchuk II; Mullineaux PM; Schöffl F
    Plant Mol Biol; 2006 Jul; 61(4-5):733-46. PubMed ID: 16897488
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of the phosphorylation of human heat shock transcription factor-1 by MAP kinase family members.
    Kim J; Nueda A; Meng YH; Dynan WS; Mivechi NF
    J Cell Biochem; 1997 Oct; 67(1):43-54. PubMed ID: 9328838
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Activation of heat-shock transcription factor 1 by hypertonic shock in 3T3 cells.
    Alfieri R; Petronini PG; Urbani S; Borghetti AF
    Biochem J; 1996 Oct; 319 ( Pt 2)(Pt 2):601-6. PubMed ID: 8912700
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hyperthermia in the febrile range induces HSP72 expression proportional to exposure temperature but not to HSF-1 DNA-binding activity in human lung epithelial A549 cells.
    Tulapurkar ME; Asiegbu BE; Singh IS; Hasday JD
    Cell Stress Chaperones; 2009 Sep; 14(5):499-508. PubMed ID: 19221897
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of HSF-1 phosphorylation in A549 cells treated with a variety of stresses.
    Mivechi NF; Koong AC; Giaccia AJ; Hahn GM
    Int J Hyperthermia; 1994; 10(3):371-9. PubMed ID: 7930803
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fluorodeoxyuridine enhances the heat shock response and decreases polyglutamine aggregation in an HSF-1-dependent manner in Caenorhabditis elegans.
    Brunquell J; Bowers P; Westerheide SD
    Mech Ageing Dev; 2014; 141-142():1-4. PubMed ID: 25168631
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oxidative stress induced heat shock factor phosphorylation and HSF-dependent activation of yeast metallothionein gene transcription.
    Liu XD; Thiele DJ
    Genes Dev; 1996 Mar; 10(5):592-603. PubMed ID: 8598289
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glutamate signaling enhances the heat tolerance of maize seedlings by plant glutamate receptor-like channels-mediated calcium signaling.
    Li ZG; Ye XY; Qiu XM
    Protoplasma; 2019 Jul; 256(4):1165-1169. PubMed ID: 30675652
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The wing in yeast heat shock transcription factor (HSF) DNA-binding domain is required for full activity.
    Cicero MP; Hubl ST; Harrison CJ; Littlefield O; Hardy JA; Nelson HC
    Nucleic Acids Res; 2001 Apr; 29(8):1715-23. PubMed ID: 11292844
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic association of transcriptional activation domains and regulatory regions in Saccharomyces cerevisiae heat shock factor.
    Chen T; Parker CS
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1200-5. PubMed ID: 11818569
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Complex regulation of the yeast heat shock transcription factor.
    Bonner JJ; Carlson T; Fackenthal DL; Paddock D; Storey K; Lea K
    Mol Biol Cell; 2000 May; 11(5):1739-51. PubMed ID: 10793148
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel regulatory factors of HSF-1 activation: facts and perspectives regarding their involvement in the age-associated attenuation of the heat shock response.
    Shamovsky I; Gershon D
    Mech Ageing Dev; 2004; 125(10-11):767-75. PubMed ID: 15541771
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Binding of the maize cytosolic Hsp70 to calmodulin, and identification of calmodulin-binding site in Hsp70.
    Sun XT; Li B; Zhou GM; Tang WQ; Bai J; Sun DY; Zhou RG
    Plant Cell Physiol; 2000 Jun; 41(6):804-10. PubMed ID: 10945351
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detection of in vivo interactions between Arabidopsis class A-HSFs, using a novel BiFC fragment, and identification of novel class B-HSF interacting proteins.
    Li M; Doll J; Weckermann K; Oecking C; Berendzen KW; Schöffl F
    Eur J Cell Biol; 2010; 89(2-3):126-32. PubMed ID: 19945192
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.