These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 15169952)
1. The role of aromaticity, exposed surface, and dipole moment in determining protein aggregation rates. Tartaglia GG; Cavalli A; Pellarin R; Caflisch A Protein Sci; 2004 Jul; 13(7):1939-41. PubMed ID: 15169952 [TBL] [Abstract][Full Text] [Related]
2. The Zyggregator method for predicting protein aggregation propensities. Tartaglia GG; Vendruscolo M Chem Soc Rev; 2008 Jul; 37(7):1395-401. PubMed ID: 18568165 [TBL] [Abstract][Full Text] [Related]
3. The competition between protein folding and aggregation: off-lattice minimalist model studies. Cellmer T; Bratko D; Prausnitz JM; Blanch H Biotechnol Bioeng; 2005 Jan; 89(1):78-87. PubMed ID: 15540197 [TBL] [Abstract][Full Text] [Related]
4. Understanding the role of the topology in protein folding by computational inverse folding experiments. Mucherino A; Costantini S; di Serafino D; D'Apuzzo M; Facchiano A; Colonna G Comput Biol Chem; 2008 Aug; 32(4):233-9. PubMed ID: 18479970 [TBL] [Abstract][Full Text] [Related]
5. Similarities in the thermodynamics and kinetics of aggregation of disease-related Abeta(1-40) peptides. Meinhardt J; Tartaglia GG; Pawar A; Christopeit T; Hortschansky P; Schroeckh V; Dobson CM; Vendruscolo M; Fändrich M Protein Sci; 2007 Jun; 16(6):1214-22. PubMed ID: 17525469 [TBL] [Abstract][Full Text] [Related]
6. Probing possible downhill folding: native contact topology likely places a significant constraint on the folding cooperativity of proteins with approximately 40 residues. Badasyan A; Liu Z; Chan HS J Mol Biol; 2008 Dec; 384(2):512-30. PubMed ID: 18823994 [TBL] [Abstract][Full Text] [Related]
7. Contact pair dynamics during folding of two small proteins: chicken villin head piece and the Alzheimer protein beta-amyloid. Mukherjee A; Bagchi B J Chem Phys; 2004 Jan; 120(3):1602-12. PubMed ID: 15268287 [TBL] [Abstract][Full Text] [Related]
8. The physics of the interactions governing folding and association of proteins. Guo W; Shea JE; Berry RS Ann N Y Acad Sci; 2005 Dec; 1066():34-53. PubMed ID: 16533917 [TBL] [Abstract][Full Text] [Related]
9. Beta-sheet preferences from first principles. Rossmeisl J; Kristensen I; Gregersen M; Jacobsen KW; Nørskov JK J Am Chem Soc; 2003 Dec; 125(52):16383-6. PubMed ID: 14692780 [TBL] [Abstract][Full Text] [Related]
10. Effects of chain length on the aggregation of model polyglutamine peptides: molecular dynamics simulations. Marchut AJ; Hall CK Proteins; 2007 Jan; 66(1):96-109. PubMed ID: 17068817 [TBL] [Abstract][Full Text] [Related]
11. Misfolding dynamics of human prion protein. Zaman MH Mol Cell Biomech; 2005 Dec; 2(4):179-90. PubMed ID: 16705864 [TBL] [Abstract][Full Text] [Related]
12. A statistical model for predicting protein folding rates from amino acid sequence with structural class information. Gromiha MM J Chem Inf Model; 2005; 45(2):494-501. PubMed ID: 15807515 [TBL] [Abstract][Full Text] [Related]
13. Topology-based potentials and the study of the competition between protein folding and aggregation. Prieto L; Rey A J Chem Phys; 2009 Mar; 130(11):115101. PubMed ID: 19317567 [TBL] [Abstract][Full Text] [Related]
14. Lessons from the design of a novel atomic potential for protein folding. Chen WW; Shakhnovich EI Protein Sci; 2005 Jul; 14(7):1741-52. PubMed ID: 15987903 [TBL] [Abstract][Full Text] [Related]
15. Amyloids, prions and the inherent infectious nature of misfolded protein aggregates. Soto C; Estrada L; Castilla J Trends Biochem Sci; 2006 Mar; 31(3):150-5. PubMed ID: 16473510 [TBL] [Abstract][Full Text] [Related]