These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 15170065)
1. Renal sodium handling for body fluid maintenance and blood pressure regulation. Matsubara M Yakugaku Zasshi; 2004 Jun; 124(6):301-9. PubMed ID: 15170065 [TBL] [Abstract][Full Text] [Related]
2. Segmental sodium reabsorption by the renal tubule in prenatally programmed hypertension in the rat. Alwasel SH; Ashton N Pediatr Nephrol; 2012 Feb; 27(2):285-93. PubMed ID: 21863227 [TBL] [Abstract][Full Text] [Related]
3. Upregulation of renal BSC1 and TSC in prenatally programmed hypertension. Manning J; Beutler K; Knepper MA; Vehaskari VM Am J Physiol Renal Physiol; 2002 Jul; 283(1):F202-6. PubMed ID: 12060603 [TBL] [Abstract][Full Text] [Related]
4. Mouse model of type II Bartter's syndrome. II. Altered expression of renal sodium- and water-transporting proteins. Wagner CA; Loffing-Cueni D; Yan Q; Schulz N; Fakitsas P; Carrel M; Wang T; Verrey F; Geibel JP; Giebisch G; Hebert SC; Loffing J Am J Physiol Renal Physiol; 2008 Jun; 294(6):F1373-80. PubMed ID: 18322017 [TBL] [Abstract][Full Text] [Related]
5. Regulation of renal Na-(K)-Cl cotransporters by vasopressin. Bachmann S; Mutig K Pflugers Arch; 2017 Aug; 469(7-8):889-897. PubMed ID: 28577072 [TBL] [Abstract][Full Text] [Related]
6. Channels, carriers, and pumps in the pathogenesis of sodium-sensitive hypertension. Capasso G; Cantone A; Evangelista C; Zacchia M; Trepiccione F; Acone D; Rizzo M Semin Nephrol; 2005 Nov; 25(6):419-24. PubMed ID: 16298266 [TBL] [Abstract][Full Text] [Related]
7. Developmental expression of sodium entry pathways in rat nephron. Schmitt R; Ellison DH; Farman N; Rossier BC; Reilly RF; Reeves WB; Oberbäumer I; Tapp R; Bachmann S Am J Physiol; 1999 Mar; 276(3):F367-81. PubMed ID: 10070160 [TBL] [Abstract][Full Text] [Related]
8. Sodium transporters in the distal nephron and disease implications. Ecelbarger CA; Tiwari S Curr Hypertens Rep; 2006 May; 8(2):158-65. PubMed ID: 16672150 [TBL] [Abstract][Full Text] [Related]
9. Renal function in mice with targeted disruption of the A isoform of the Na-K-2Cl co-transporter. Oppermann M; Mizel D; Kim SM; Chen L; Faulhaber-Walter R; Huang Y; Li C; Deng C; Briggs J; Schnermann J; Castrop H J Am Soc Nephrol; 2007 Feb; 18(2):440-8. PubMed ID: 17215439 [TBL] [Abstract][Full Text] [Related]
10. Transient body fluid accumulation and enhanced NKCC2 expression in gerbils with brain infarction. Ejima Y; Nakamura Y; Michimata M; Hatano R; Kazama I; Sanada S; Arata T; Suzuki M; Miyama N; Sato A; Satomi S; Fushiya S; Sasaki S; Matsubara M Nephron Physiol; 2006; 103(1):p25-32. PubMed ID: 16352918 [TBL] [Abstract][Full Text] [Related]
11. Potassium handling in health and disease: lessons from inherited tubulopathies. Landau D Pediatr Endocrinol Rev; 2004 Dec; 2(2):203-8. PubMed ID: 16429107 [TBL] [Abstract][Full Text] [Related]
12. Physiology of renal sodium transport. Greger R Am J Med Sci; 2000 Jan; 319(1):51-62. PubMed ID: 10653444 [TBL] [Abstract][Full Text] [Related]
13. Expression of the Na-K-2Cl cotransporter by macula densa and thick ascending limb cells of rat and rabbit nephron. Obermüller N; Kunchaparty S; Ellison DH; Bachmann S J Clin Invest; 1996 Aug; 98(3):635-40. PubMed ID: 8698854 [TBL] [Abstract][Full Text] [Related]
14. Demonstration of the functional impact of vasopressin signaling in the thick ascending limb by a targeted transgenic rat approach. Mutig K; Borowski T; Boldt C; Borschewski A; Paliege A; Popova E; Bader M; Bachmann S Am J Physiol Renal Physiol; 2016 Aug; 311(2):F411-23. PubMed ID: 27306979 [TBL] [Abstract][Full Text] [Related]
15. Renal expression of sodium transporters and aquaporin-2 in hypothyroid rats. Schmitt R; Klussmann E; Kahl T; Ellison DH; Bachmann S Am J Physiol Renal Physiol; 2003 May; 284(5):F1097-104. PubMed ID: 12569081 [TBL] [Abstract][Full Text] [Related]
16. Roles of Na-K-2Cl and Na-Cl cotransporters and ROMK potassium channels in urinary concentrating mechanism. Hebert SC Am J Physiol; 1998 Sep; 275(3):F325-7. PubMed ID: 9729502 [TBL] [Abstract][Full Text] [Related]
17. Abnormal reabsorption of Na+/CI- by the thiazide-inhibitable transporter of the distal convoluted tubule in Gitelman's syndrome. Colussi G; Rombolà G; Brunati C; De Ferrari ME Am J Nephrol; 1997; 17(2):103-11. PubMed ID: 9096439 [TBL] [Abstract][Full Text] [Related]
18. Vasopressin V2 receptor expression along rat, mouse, and human renal epithelia with focus on TAL. Mutig K; Paliege A; Kahl T; Jöns T; Müller-Esterl W; Bachmann S Am J Physiol Renal Physiol; 2007 Oct; 293(4):F1166-77. PubMed ID: 17626156 [TBL] [Abstract][Full Text] [Related]
19. Adaptive changes in GFR, tubular morphology, and transport in subtotal nephrectomized kidneys: modeling and analysis. Layton AT; Edwards A; Vallon V Am J Physiol Renal Physiol; 2017 Aug; 313(2):F199-F209. PubMed ID: 28331059 [TBL] [Abstract][Full Text] [Related]
20. Renal transporter activation during angiotensin-II hypertension is blunted in interferon-γ-/- and interleukin-17A-/- mice. Kamat NV; Thabet SR; Xiao L; Saleh MA; Kirabo A; Madhur MS; Delpire E; Harrison DG; McDonough AA Hypertension; 2015 Mar; 65(3):569-76. PubMed ID: 25601932 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]