These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 15170322)

  • 21. Molecular dynamics simulations of bovine rhodopsin: influence of protonation states and different membrane-mimicking environments.
    Schlegel B; Sippl W; Höltje HD
    J Mol Model; 2005 Dec; 12(1):49-64. PubMed ID: 16247601
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure of bovine rhodopsin in a trigonal crystal form.
    Li J; Edwards PC; Burghammer M; Villa C; Schertler GF
    J Mol Biol; 2004 Nov; 343(5):1409-38. PubMed ID: 15491621
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coupling of protonation switches during rhodopsin activation.
    Vogel R; Sakmar TP; Sheves M; Siebert F
    Photochem Photobiol; 2007; 83(2):286-92. PubMed ID: 17576345
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Very fast prediction and rationalization of pKa values for protein-ligand complexes.
    Bas DC; Rogers DM; Jensen JH
    Proteins; 2008 Nov; 73(3):765-83. PubMed ID: 18498103
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The determination of protonation states in proteins.
    Ahmed HU; Blakeley MP; Cianci M; Cruickshank DW; Hubbard JA; Helliwell JR
    Acta Crystallogr D Biol Crystallogr; 2007 Aug; 63(Pt 8):906-22. PubMed ID: 17642517
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Time-resolved photointermediate changes in rhodopsin glutamic acid 181 mutants.
    Lewis JW; Szundi I; Kazmi MA; Sakmar TP; Kliger DS
    Biochemistry; 2004 Oct; 43(39):12614-21. PubMed ID: 15449951
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glutamic acid 181 is uncharged in dark-adapted visual rhodopsin.
    Sekharan S; Buss V
    J Am Chem Soc; 2008 Dec; 130(51):17220-1. PubMed ID: 19035639
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Homology modeling and molecular dynamics simulations of the mu opioid receptor in a membrane-aqueous system.
    Zhang Y; Sham YY; Rajamani R; Gao J; Portoghese PS
    Chembiochem; 2005 May; 6(5):853-9. PubMed ID: 15776407
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The hydrogen-bonding network of water molecules and the peptide backbone in the region connecting Asp83, Gly120, and Glu113 in bovine rhodopsin.
    Nagata T; Terakita A; Kandori H; Shichida Y; Maeda A
    Biochemistry; 1998 Dec; 37(49):17216-22. PubMed ID: 9860835
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The protonation state of Glu181 in rhodopsin revisited: interpretation of experimental data on the basis of QM/MM calculations.
    Frähmcke JS; Wanko M; Phatak P; Mroginski MA; Elstner M
    J Phys Chem B; 2010 Sep; 114(34):11338-52. PubMed ID: 20698519
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NMR chemical shifts of the rhodopsin chromophore in the dark state and in bathorhodopsin: a hybrid QM/MM molecular dynamics study.
    Röhrig UF; Sebastiani D
    J Phys Chem B; 2008 Jan; 112(4):1267-74. PubMed ID: 18177030
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxidation of the non-heme iron complex in photosystem II.
    Ishikita H; Knapp EW
    Biochemistry; 2005 Nov; 44(45):14772-83. PubMed ID: 16274225
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tunable pK of amino acid residues at the air-water interface gives an L-zyme (langmuir enzyme).
    Ariga K; Nakanishi T; Hill JP; Shirai M; Okuno M; Abe T; Kikuchi J
    J Am Chem Soc; 2005 Aug; 127(34):12074-80. PubMed ID: 16117548
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conformation analysis of glu181 and ser186 in the metarhodopsin I state.
    Ishiguro M
    Chembiochem; 2004 Sep; 5(9):1204-9. PubMed ID: 15368571
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The activation mechanism of chemokine receptor CCR5 involves common structural changes but a different network of interhelical interactions relative to rhodopsin.
    Springael JY; de Poorter C; Deupi X; Van Durme J; Pardo L; Parmentier M
    Cell Signal; 2007 Jul; 19(7):1446-56. PubMed ID: 17320349
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predisposition of the dark state of rhodopsin to functional changes in structure.
    Isin B; Rader AJ; Dhiman HK; Klein-Seetharaman J; Bahar I
    Proteins; 2006 Dec; 65(4):970-83. PubMed ID: 17009319
    [TBL] [Abstract][Full Text] [Related]  

  • 37. FTIR spectroscopy of the all-trans form of Anabaena sensory rhodopsin at 77 K: hydrogen bond of a water between the Schiff base and Asp75.
    Furutani Y; Kawanabe A; Jung KH; Kandori H
    Biochemistry; 2005 Sep; 44(37):12287-96. PubMed ID: 16156642
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Challenges in pKa predictions for proteins: the case of Asp213 in human proteinase 3.
    Hajjar E; Dejaegere A; Reuter N
    J Phys Chem A; 2009 Oct; 113(43):11783-92. PubMed ID: 19780520
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carbon-deuterium vibrational probes of amino acid protonation state.
    Miller CS; Corcelli SA
    J Phys Chem B; 2009 Jun; 113(24):8218-21. PubMed ID: 19463012
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lipid protein interactions couple protonation to conformation in a conserved cytosolic domain of G protein-coupled receptors.
    Madathil S; Fahmy K
    J Biol Chem; 2009 Oct; 284(42):28801-9. PubMed ID: 19706606
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.