BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 15170354)

  • 1. Active site residues in Mycobacterium tuberculosis pantothenate synthetase required in the formation and stabilization of the adenylate intermediate.
    Zheng R; Dam TK; Brewer CF; Blanchard JS
    Biochemistry; 2004 Jun; 43(22):7171-8. PubMed ID: 15170354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alanine mutation of the catalytic sites of Pantothenate Synthetase causes distinct conformational changes in the ATP binding region.
    Pandey B; Grover S; Goyal S; Kumari A; Singh A; Jamal S; Kaur J; Grover A
    Sci Rep; 2018 Jan; 8(1):903. PubMed ID: 29343701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of the pantothenate synthetase from Mycobacterium tuberculosis, snapshots of the enzyme in action.
    Wang S; Eisenberg D
    Biochemistry; 2006 Feb; 45(6):1554-61. PubMed ID: 16460002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steady-state and pre-steady-state kinetic analysis of Mycobacterium tuberculosis pantothenate synthetase.
    Zheng R; Blanchard JS
    Biochemistry; 2001 Oct; 40(43):12904-12. PubMed ID: 11669627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Positional isotope exchange analysis of the pantothenate synthetase reaction.
    Williams L; Zheng R; Blanchard JS; Raushel FM
    Biochemistry; 2003 May; 42(17):5108-13. PubMed ID: 12718554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structures of a pantothenate synthetase from M. tuberculosis and its complexes with substrates and a reaction intermediate.
    Wang S; Eisenberg D
    Protein Sci; 2003 May; 12(5):1097-108. PubMed ID: 12717031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel inhibitor of Mycobacterium tuberculosis pantothenate synthetase.
    White EL; Southworth K; Ross L; Cooley S; Gill RB; Sosa MI; Manouvakhova A; Rasmussen L; Goulding C; Eisenberg D; Fletcher TM
    J Biomol Screen; 2007 Feb; 12(1):100-5. PubMed ID: 17175524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ray crystallographic and NMR studies of pantothenate synthetase provide insights into the mechanism of homotropic inhibition by pantoate.
    Chakrabarti KS; Thakur KG; Gopal B; Sarma SP
    FEBS J; 2010 Feb; 277(3):697-712. PubMed ID: 20059543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The design and synthesis of inhibitors of pantothenate synthetase.
    Tuck KL; Saldanha SA; Birch LM; Smith AG; Abell C
    Org Biomol Chem; 2006 Oct; 4(19):3598-610. PubMed ID: 16990935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate-induced closing of the active site revealed by the crystal structure of pantothenate synthetase from Staphylococcus aureus.
    Satoh A; Konishi S; Tamura H; Stickland HG; Whitney HM; Smith AG; Matsumura H; Inoue T
    Biochemistry; 2010 Aug; 49(30):6400-10. PubMed ID: 20568730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel isoform of pantothenate synthetase in the Archaea.
    Ronconi S; Jonczyk R; Genschel U
    FEBS J; 2008 Jun; 275(11):2754-64. PubMed ID: 18422645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of the dynamics of pantothenate synthetase from M. tuberculosis and E. coli: computational studies.
    Tan YS; Fuentes G; Verma C
    Proteins; 2011 Jun; 79(6):1715-27. PubMed ID: 21425349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reaction intermediate analogues as bisubstrate inhibitors of pantothenate synthetase.
    Xu Z; Yin W; Martinelli LK; Evans J; Chen J; Yu Y; Wilson DJ; Mizrahi V; Qiao C; Aldrich CC
    Bioorg Med Chem; 2014 Mar; 22(5):1726-35. PubMed ID: 24507827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between activating and editing functions of the adenylation domain of apo-tyrocidin synthetase 1 (apo-TY1).
    Bucević-Popović V; Pavela-Vrancic M; Dieckmann R; Von Döhren H
    Biochimie; 2006; 88(3-4):265-70. PubMed ID: 16182433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-directed mutagenesis of UDP-galactopyranose mutase reveals a critical role for the active-site, conserved arginine residues.
    Chad JM; Sarathy KP; Gruber TD; Addala E; Kiessling LL; Sanders DA
    Biochemistry; 2007 Jun; 46(23):6723-32. PubMed ID: 17511471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The final step of pantothenate biosynthesis in higher plants: cloning and characterization of pantothenate synthetase from Lotus japonicus and Oryza sativum (rice).
    Genschel U; Powell CA; Abell C; Smith AG
    Biochem J; 1999 Aug; 341 ( Pt 3)(Pt 3):669-78. PubMed ID: 10417331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic characterization and crystal structure analysis of the D-alanine-D-alanine ligase from Helicobacter pylori.
    Wu D; Zhang L; Kong Y; Du J; Chen S; Chen J; Ding J; Jiang H; Shen X
    Proteins; 2008 Sep; 72(4):1148-60. PubMed ID: 18320587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of lumazine synthase from Mycobacterium tuberculosis as a target for rational drug design: binding mode of a new class of purinetrione inhibitors.
    Morgunova E; Meining W; Illarionov B; Haase I; Jin G; Bacher A; Cushman M; Fischer M; Ladenstein R
    Biochemistry; 2005 Mar; 44(8):2746-58. PubMed ID: 15723519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional structures of apo- and holo-L-alanine dehydrogenase from Mycobacterium tuberculosis reveal conformational changes upon coenzyme binding.
    Agren D; Stehr M; Berthold CL; Kapoor S; Oehlmann W; Singh M; Schneider G
    J Mol Biol; 2008 Apr; 377(4):1161-73. PubMed ID: 18304579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mycobacterium tuberculosis pantothenate kinase: possible changes in location of ligands during enzyme action.
    Chetnani B; Das S; Kumar P; Surolia A; Vijayan M
    Acta Crystallogr D Biol Crystallogr; 2009 Apr; 65(Pt 4):312-25. PubMed ID: 19307712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.