BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

451 related articles for article (PubMed ID: 15170359)

  • 1. High-affinity binding of tumor-suppressor protein p53 and HMGB1 to hemicatenated DNA loops.
    Stros M; Muselíková-Polanská E; Pospísilová S; Strauss F
    Biochemistry; 2004 Jun; 43(22):7215-25. PubMed ID: 15170359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determinants of specific binding of HMGB1 protein to hemicatenated DNA loops.
    Jaouen S; de Koning L; Gaillard C; Muselíková-Polanská E; Stros M; Strauss F
    J Mol Biol; 2005 Nov; 353(4):822-37. PubMed ID: 16199053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. YY1 binding to a subset of p53 DNA-target sites regulates p53-dependent transcription.
    Yakovleva T; Kolesnikova L; Vukojević V; Gileva I; Tan-No K; Austen M; Lüscher B; Ekström TJ; Terenius L; Bakalkin G
    Biochem Biophys Res Commun; 2004 May; 318(2):615-24. PubMed ID: 15120643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nature of full-length HMGB1 binding to cisplatin-modified DNA.
    Jung Y; Lippard SJ
    Biochemistry; 2003 Mar; 42(9):2664-71. PubMed ID: 12614161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The N terminus of the murine p53 tumour suppressor is an independent regulatory domain affecting activation and thermostability.
    Hansen S; Lane DP; Midgley CA
    J Mol Biol; 1998 Jan; 275(4):575-88. PubMed ID: 9466932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of promoter DNA topology on sequence-specific DNA binding and transactivation by tumor suppressor p53.
    Kim E; Rohaly G; Heinrichs S; Gimnopoulos D; Meissner H; Deppert W
    Oncogene; 1999 Dec; 18(51):7310-8. PubMed ID: 10602486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tumor suppressor protein p53 binds preferentially to supercoiled DNA.
    Palecek E; Vlk D; Stanková V; Brázda V; Vojtesek B; Hupp TR; Schaper A; Jovin TM
    Oncogene; 1997 Oct; 15(18):2201-9. PubMed ID: 9393978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis of restoring sequence-specific DNA binding and transactivation to mutant p53 by suppressor mutations.
    Suad O; Rozenberg H; Brosh R; Diskin-Posner Y; Kessler N; Shimon LJ; Frolow F; Liran A; Rotter V; Shakked Z
    J Mol Biol; 2009 Jan; 385(1):249-65. PubMed ID: 18996393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A positive feedback mechanism in the transcriptional activation of Apaf-1 by p53 and the coactivator Zac-1.
    Rozenfeld-Granot G; Krishnamurthy J; Kannan K; Toren A; Amariglio N; Givol D; Rechavi G
    Oncogene; 2002 Feb; 21(10):1469-76. PubMed ID: 11896574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA-conformation is an important determinant of sequence-specific DNA binding by tumor suppressor p53.
    Kim E; Albrechtsen N; Deppert W
    Oncogene; 1997 Aug; 15(7):857-69. PubMed ID: 9266973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of p53 sequence-specific binding by DNA supercoiling.
    Palecek E; Brázda V; Jagelská E; Pecinka P; Karlovská L; Brázdová M
    Oncogene; 2004 Mar; 23(12):2119-27. PubMed ID: 14755248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical and functional interactions between members of the tumour suppressor p53 and the Sp families of transcription factors: importance for the regulation of genes involved in cell-cycle arrest and apoptosis.
    Koutsodontis G; Vasilaki E; Chou WC; Papakosta P; Kardassis D
    Biochem J; 2005 Jul; 389(Pt 2):443-55. PubMed ID: 15790310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA bending due to specific p53 and p53 core domain-DNA interactions visualized by electron microscopy.
    Cherny DI; Striker G; Subramaniam V; Jett SD; Palecek E; Jovin TM
    J Mol Biol; 1999 Dec; 294(4):1015-26. PubMed ID: 10588903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning the genes and DNA binding properties of High Mobility Group B1 (HMGB1) proteins from the human blood flukes Schistosoma mansoni and Schistosoma japonicum.
    de Oliveira FM; de Abreu da Silva IC; Rumjanek FD; Dias-Neto E; Guimarães PE; Verjovski-Almeida S; Stros M; Fantappié MR
    Gene; 2006 Aug; 377():33-45. PubMed ID: 16644144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequestering of p53 into DNA-protein filaments revealed by electron microscopy.
    Cherny DI; Brázdova M; Palecek J; Palecek E; Jovin TM
    Biophys Chem; 2005 Apr; 114(2-3):261-71. PubMed ID: 15829361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional repression of the human p53 gene by hepatitis B viral core protein (HBc) in human liver cells.
    Kwon JA; Rho HM
    Biol Chem; 2003 Feb; 384(2):203-12. PubMed ID: 12675512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recognition of cisplatin-damaged DNA by p53 protein: critical role of the p53 C-terminal domain.
    Pivonková H; Brázdová M; Kaspárková J; Brabec V; Fojta M
    Biochem Biophys Res Commun; 2006 Jan; 339(2):477-84. PubMed ID: 16300733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PAC1 phosphatase is a transcription target of p53 in signalling apoptosis and growth suppression.
    Yin Y; Liu YX; Jin YJ; Hall EJ; Barrett JC
    Nature; 2003 Apr; 422(6931):527-31. PubMed ID: 12673251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatin immunoprecipitation analysis fails to support the latency model for regulation of p53 DNA binding activity in vivo.
    Kaeser MD; Iggo RD
    Proc Natl Acad Sci U S A; 2002 Jan; 99(1):95-100. PubMed ID: 11756653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative binding of p53 to its promoter and DNA recognition elements.
    Weinberg RL; Veprintsev DB; Bycroft M; Fersht AR
    J Mol Biol; 2005 May; 348(3):589-96. PubMed ID: 15826656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.