These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 15170384)
1. Kinetics of chemical modification of arginine residues in mitochondrial creatine kinase from bovine heart: evidence for negative cooperativity. Belousova LV; Muizhnek EL Biochemistry (Mosc); 2004 Apr; 69(4):455-61. PubMed ID: 15170384 [TBL] [Abstract][Full Text] [Related]
3. Essential arginine residues of creatine kinase from beef heart mitochondria. Severin SE; Belousova LV; Moskvitina EL Biochem Int; 1983 Feb; 6(2):149-56. PubMed ID: 6332626 [TBL] [Abstract][Full Text] [Related]
4. Creatine kinase: essential arginine residues at the nucleotide binding site identified by chemical modification and high-resolution tandem mass spectrometry. Wood TD; Guan Z; Borders CL; Chen LH; Kenyon GL; McLafferty FW Proc Natl Acad Sci U S A; 1998 Mar; 95(7):3362-5. PubMed ID: 9520370 [TBL] [Abstract][Full Text] [Related]
5. [Quantitative determination of functionally essential arginine residues in mitochondrial creatine kinase]. Moskvitina EL; Belousova LV Dokl Akad Nauk SSSR; 1985; 281(1):209-13. PubMed ID: 3996200 [No Abstract] [Full Text] [Related]
6. Chemical modification of lysine and arginine residues of bovine heart 2-oxoglutarate dehydrogenase: effect on the enzyme activity and regulation. Ostrovtsova SA Acta Biochim Pol; 1998; 45(4):1031-6. PubMed ID: 10397349 [TBL] [Abstract][Full Text] [Related]
7. 4-Hydroxy-3-nitrophenylglyoxal. A chromophoric reagent for arginyl residues in proteins. Borders CL; Pearson LJ; McLaughlin AE; Gustafson ME; Vasiloff J; An FY; Morgan DJ Biochim Biophys Acta; 1979 Jun; 568(2):491-5. PubMed ID: 486497 [TBL] [Abstract][Full Text] [Related]
8. Effects of arginine on rabbit muscle creatine kinase and salt-induced molten globule-like state. Ou WB; Wang RS; Lu J; Zhou HM Biochim Biophys Acta; 2003 Nov; 1652(1):7-16. PubMed ID: 14580992 [TBL] [Abstract][Full Text] [Related]
9. [Modification of arginine residues in pyruvate kinase (author's transl)]. Berghäuser J Hoppe Seylers Z Physiol Chem; 1977 Dec; 358(12):1565-72. PubMed ID: 590939 [TBL] [Abstract][Full Text] [Related]
10. Studies on inactivation of anion transport in human red blood cell membrane by reversibly and irreversibly acting arginine-specific reagents. Julien T; Zaki L J Membr Biol; 1988 Jun; 102(3):217-24. PubMed ID: 3172180 [TBL] [Abstract][Full Text] [Related]
11. Towards the localization of the essential arginine residues in the band 3 protein of human red blood cell membranes. Böhm R; Zaki L Biochim Biophys Acta; 1996 Apr; 1280(2):238-42. PubMed ID: 8639699 [TBL] [Abstract][Full Text] [Related]
12. [Effect of oligomerization on the properties of essential SH-groups of mitochondrial creatine kinase]. Fedosov SN; Belousova LV Biokhimiia; 1988 Apr; 53(4):550-64. PubMed ID: 3395637 [TBL] [Abstract][Full Text] [Related]
13. Chemical modification studies on alkaline phosphatase from pearl oyster (Pinctada fucata): a substrate reaction course analysis and involvement of essential arginine and lysine residues at the active site. Chen HT; Xie LP; Yu ZY; Xu GR; Zhang RQ Int J Biochem Cell Biol; 2005 Jul; 37(7):1446-57. PubMed ID: 15833276 [TBL] [Abstract][Full Text] [Related]
14. Transition state stabilization by six arginines clustered in the active site of creatine kinase. Jourden MJ; Geiss PR; Thomenius MJ; Horst LA; Barty MM; Brym MJ; Mulligan GB; Almeida RM; Kersteen BA; Myers NR; Snider MJ; Borders CL; Edmiston PL Biochim Biophys Acta; 2005 Aug; 1751(2):178-83. PubMed ID: 16005271 [TBL] [Abstract][Full Text] [Related]
15. [Non-equivalency of SH groups essential for the activity of mitochondrial creatine kinase]. Belousova LV; Fedosov SN; Rostovtsev AP; Zaĭtseva NN; Miatlev VD Biokhimiia; 1986 Mar; 51(3):478-93. PubMed ID: 3697421 [TBL] [Abstract][Full Text] [Related]
16. A quantitative approach to membrane binding of human ubiquitous mitochondrial creatine kinase using surface plasmon resonance. Schlattner U; Wallimann T J Bioenerg Biomembr; 2000 Feb; 32(1):123-31. PubMed ID: 11768757 [TBL] [Abstract][Full Text] [Related]
17. Kinetics of the creatine kinase reaction in neonatal rabbit heart: an empirical analysis of the rate equation. McAuliffe JJ; Perry SB; Brooks EE; Ingwall JS Biochemistry; 1991 Mar; 30(10):2585-93. PubMed ID: 2001348 [TBL] [Abstract][Full Text] [Related]
18. Membrane-binding and lipid vesicle cross-linking kinetics of the mitochondrial creatine kinase octamer. Stachowiak O; Dolder M; Wallimann T Biochemistry; 1996 Dec; 35(48):15522-8. PubMed ID: 8952506 [TBL] [Abstract][Full Text] [Related]
19. Chemical modification of functional arginyl residues in beef kidney D-aspartate oxidase. Tedeschi G; Negri A; Ceciliani F; Biondi PA; Secchi C; Ronchi S Eur J Biochem; 1992 Apr; 205(1):127-32. PubMed ID: 1555574 [TBL] [Abstract][Full Text] [Related]
20. [Creatine kinase isoenzymes--characterization and functions in cell]. Grzyb K; Skorkowski EF Postepy Biochem; 2008; 54(3):274-83. PubMed ID: 19112826 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]