BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 15170491)

  • 21. The nuclear localization signal and the C-terminal region of FHY1 are required for transmission of phytochrome A signals.
    Zeidler M; Zhou Q; Sarda X; Yau CP; Chua NH
    Plant J; 2004 Nov; 40(3):355-65. PubMed ID: 15469493
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Subcellular sites of the signal transduction and degradation of phytochrome A.
    Toledo-Ortiz G; Kiryu Y; Kobayashi J; Oka Y; Kim Y; Nam HG; Mochizuki N; Nagatani A
    Plant Cell Physiol; 2010 Oct; 51(10):1648-60. PubMed ID: 20739301
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phytochrome A is an irradiance-dependent red light sensor.
    Franklin KA; Allen T; Whitelam GC
    Plant J; 2007 Apr; 50(1):108-17. PubMed ID: 17346261
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two native pools of phytochrome A in monocots: Evidence from fluorescence investigations of phytochrome mutants of rice.
    Sineshchekov V; Loskovich A; Inagaki N; Takano M
    Photochem Photobiol; 2006; 82(4):1116-22. PubMed ID: 17205634
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nuclear accumulation of the phytochrome A photoreceptor requires FHY1.
    Hiltbrunner A; Viczián A; Bury E; Tscheuschler A; Kircher S; Tóth R; Honsberger A; Nagy F; Fankhauser C; Schäfer E
    Curr Biol; 2005 Dec; 15(23):2125-30. PubMed ID: 16332538
    [TBL] [Abstract][Full Text] [Related]  

  • 26. phyA dominates in transduction of red-light signals to rapidly responding genes at the initiation of Arabidopsis seedling de-etiolation.
    Tepperman JM; Hwang YS; Quail PH
    Plant J; 2006 Dec; 48(5):728-42. PubMed ID: 17076805
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recombinant phytochrome A in yeast differs by its spectroscopic and photochemical properties from the major phyA' and is close to the minor phyA": evidence for posttranslational modification of the pigment in plants.
    Sineshchekov V; Hennig L; Lamparter T; Hughes J; Gärtner W; Schäfer E
    Photochem Photobiol; 2001 Jun; 73(6):692-6. PubMed ID: 11421077
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The dephosphorylated S8A and S18A mutants of (oat) phytochrome A comprise its two species, phyA' and phyA'', suggesting that autophosphorylation at these sites is not involved in the phyA differentiation.
    Sineshchekov V; Koppel L; Kim JI
    Photochem Photobiol Sci; 2019 May; 18(5):1242-1248. PubMed ID: 30864573
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two native types of phytochrome A, phyA' and phyA", differ by the state of phosphorylation at the N-terminus as revealed by fluorescence investigations of the Ser/Ala mutant of rice phyA expressed in transgenic Arabidopsis.
    Sineshchekov VA; Koppel LA; Bolle C
    Funct Plant Biol; 2018 Jan; 45(2):150-159. PubMed ID: 32291029
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of phytochrome B nuclear localization through light-dependent unmasking of nuclear-localization signals.
    Chen M; Tao Y; Lim J; Shaw A; Chory J
    Curr Biol; 2005 Apr; 15(7):637-42. PubMed ID: 15823535
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PKS1 and PKS2 affect the phyA state in etiolated Arabidopsis seedlings.
    Sineshchekov V; Fankhauser C
    Photochem Photobiol Sci; 2004 Jun; 3(6):608-11. PubMed ID: 15170492
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Light perception and signalling by phytochrome A.
    Casal JJ; Candia AN; Sellaro R
    J Exp Bot; 2014 Jun; 65(11):2835-45. PubMed ID: 24220656
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phytochrome A and its Functional Manifestations in Etiolated and Far-red Light-grown Seedlings of the Wild-type Rice and its Hebiba and Cpm2 Mutants Deficient in the Defense-related Phytohormone Jasmonic Acid.
    Sineshchekov V; Koppel L; Riemann M; Nick P
    Photochem Photobiol; 2021 Mar; 97(2):335-342. PubMed ID: 33090519
    [TBL] [Abstract][Full Text] [Related]  

  • 34. FHY1 and FHL act together to mediate nuclear accumulation of the phytochrome A photoreceptor.
    Hiltbrunner A; Tscheuschler A; Viczián A; Kunkel T; Kircher S; Schäfer E
    Plant Cell Physiol; 2006 Aug; 47(8):1023-34. PubMed ID: 16861711
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluorescence and photochemical characterization of phytochromes A and B in transgenic potato expressing Arabidopsis phytochrome B.
    Sineshchekov V; Ogorodnikova O; Thiele A; Gatz C
    J Photochem Photobiol B; 2000 Dec; 59(1-3):139-46. PubMed ID: 11332881
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Root phototropism: how light and gravity interact in shaping plant form.
    Kiss JZ; Correll MJ; Mullen JL; Hangarter RP; Edelmann RE
    Gravit Space Biol Bull; 2003 Jun; 16(2):55-60. PubMed ID: 12959132
    [TBL] [Abstract][Full Text] [Related]  

  • 37. phyA-GFP is spectroscopically and photochemically similar to phyA and comprises both its native types, phyA' and phyA''.
    Sineshchekov V; Sudnitsin A; Ádám É; Schäfer E; Viczián A
    Photochem Photobiol Sci; 2014 Dec; 13(12):1671-9. PubMed ID: 25297540
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phylogenetic relationships of B-related phytochromes in the Brassicaceae: Redundancy and the persistence of phytochrome D.
    Mathews S; McBreen K
    Mol Phylogenet Evol; 2008 Nov; 49(2):411-23. PubMed ID: 18768161
    [TBL] [Abstract][Full Text] [Related]  

  • 39. phyB-1 sorghum maintains responsiveness to simulated shade, irradiance and red light: far-red light.
    Finlayson SA; Hays DB; Morgan PW
    Plant Cell Environ; 2007 Aug; 30(8):952-62. PubMed ID: 17617823
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential interactions of phytochrome A (Pr vs. Pfr) with monoclonal antibodies probed by a surface plasmon resonance technique.
    Natori C; Kim JI; Bhoo SH; Han YJ; Hanzawa H; Furuya M; Song PS
    Photochem Photobiol Sci; 2007 Jan; 6(1):83-9. PubMed ID: 17200742
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.