BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 15171257)

  • 1. Reversal of gene silencing as a therapeutic target for cancer--roles for DNA methylation and its interdigitation with chromatin.
    Baylin SB
    Novartis Found Symp; 2004; 259():226-33; discussion 234-7, 285-8. PubMed ID: 15171257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordinated changes in DNA methylation and histone modifications regulate silencing/derepression of luteinizing hormone receptor gene transcription.
    Zhang Y; Fatima N; Dufau ML
    Mol Cell Biol; 2005 Sep; 25(18):7929-39. PubMed ID: 16135786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional gene silencing promotes DNA hypermethylation through a sequential change in chromatin modifications in cancer cells.
    Stirzaker C; Song JZ; Davidson B; Clark SJ
    Cancer Res; 2004 Jun; 64(11):3871-7. PubMed ID: 15172996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epigenetic interplay between histone modifications and DNA methylation in gene silencing.
    Vaissière T; Sawan C; Herceg Z
    Mutat Res; 2008; 659(1-2):40-8. PubMed ID: 18407786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenetic silencing mediated by CpG island methylation: potential as a therapeutic target and as a biomarker.
    Teodoridis JM; Strathdee G; Brown R
    Drug Resist Updat; 2004; 7(4-5):267-78. PubMed ID: 15533764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual action on promoter demethylation and chromatin by an isothiocyanate restored GSTP1 silenced in prostate cancer.
    Wang LG; Beklemisheva A; Liu XM; Ferrari AC; Feng J; Chiao JW
    Mol Carcinog; 2007 Jan; 46(1):24-31. PubMed ID: 16921492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epigenetic control of ovarian function: the emerging role of histone modifications.
    LaVoie HA
    Mol Cell Endocrinol; 2005 Nov; 243(1-2):12-8. PubMed ID: 16219412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histone modification in the TGFbetaRII gene promoter and its significance for responsiveness to HDAC inhibitor in lung cancer cell lines.
    Osada H; Tatematsu Y; Sugito N; Horio Y; Takahashi T
    Mol Carcinog; 2005 Dec; 44(4):233-41. PubMed ID: 16163707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epigenetic changes in prostate cancer: implication for diagnosis and treatment.
    Li LC; Carroll PR; Dahiya R
    J Natl Cancer Inst; 2005 Jan; 97(2):103-15. PubMed ID: 15657340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dominant-negative histone H3 lysine 27 mutant derepresses silenced tumor suppressor genes and reverses the drug-resistant phenotype in cancer cells.
    Abbosh PH; Montgomery JS; Starkey JA; Novotny M; Zuhowski EG; Egorin MJ; Moseman AP; Golas A; Brannon KM; Balch C; Huang TH; Nephew KP
    Cancer Res; 2006 Jun; 66(11):5582-91. PubMed ID: 16740693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA methylation and chromatin - unraveling the tangled web.
    Robertson KD
    Oncogene; 2002 Aug; 21(35):5361-79. PubMed ID: 12154399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aberrant de novo methylation of the p16INK4A CpG island is initiated post gene silencing in association with chromatin remodelling and mimics nucleosome positioning.
    Hinshelwood RA; Melki JR; Huschtscha LI; Paul C; Song JZ; Stirzaker C; Reddel RR; Clark SJ
    Hum Mol Genet; 2009 Aug; 18(16):3098-109. PubMed ID: 19477956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epigenetic targets in hematopoietic malignancies.
    Claus R; Lübbert M
    Oncogene; 2003 Sep; 22(42):6489-96. PubMed ID: 14528273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epigenetic drugs as pleiotropic agents in cancer treatment: biomolecular aspects and clinical applications.
    Sigalotti L; Fratta E; Coral S; Cortini E; Covre A; Nicolay HJ; Anzalone L; Pezzani L; Di Giacomo AM; Fonsatti E; Colizzi F; Altomonte M; Calabrò L; Maio M
    J Cell Physiol; 2007 Aug; 212(2):330-44. PubMed ID: 17458893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The clinical application of targeting cancer through histone acetylation and hypomethylation.
    Gilbert J; Gore SD; Herman JG; Carducci MA
    Clin Cancer Res; 2004 Jul; 10(14):4589-96. PubMed ID: 15269129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenetic and chromatin modifiers as targeted therapy of hematologic malignancies.
    Bhalla KN
    J Clin Oncol; 2005 Jun; 23(17):3971-93. PubMed ID: 15897549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epigenetic changes in cancer.
    Grønbaek K; Hother C; Jones PA
    APMIS; 2007 Oct; 115(10):1039-59. PubMed ID: 18042143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenetics and cancer treatment.
    Kristensen LS; Nielsen HM; Hansen LL
    Eur J Pharmacol; 2009 Dec; 625(1-3):131-42. PubMed ID: 19836388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The potential role of epigenetic therapy in multiple myeloma.
    Smith EM; Boyd K; Davies FE
    Br J Haematol; 2010 Mar; 148(5):702-13. PubMed ID: 19912222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The theoretical basis of transcriptional therapy of cancer: can it be put into practice?
    Melnick AM; Adelson K; Licht JD
    J Clin Oncol; 2005 Jun; 23(17):3957-70. PubMed ID: 15867201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.