These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 15171276)

  • 1. Elution control of microparticles with a coupled acoustic-gravity field and orthogonal laminar flow.
    Masudo T; Okada T
    Anal Sci; 2004 May; 20(5):753-5. PubMed ID: 15171276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elution control of microparticles with a coupled acoustic-gravity field and orthogonal laminar flow.
    Masudo T; Okada T
    Anal Sci; 2004 Jun; 20(6):753-5. PubMed ID: 15228126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation of lipids from blood utilizing ultrasonic standing waves in microfluidic channels.
    Petersson F; Nilsson A; Holm C; Jonsson H; Laurell T
    Analyst; 2004 Oct; 129(10):938-43. PubMed ID: 15457327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trapping of microparticles in the near field of an ultrasonic transducer.
    Lilliehorn T; Simu U; Nilsson M; Almqvist M; Stepinski T; Laurell T; Nilsson J; Johansson S
    Ultrasonics; 2005 Mar; 43(5):293-303. PubMed ID: 15737379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free flow acoustophoresis: microfluidic-based mode of particle and cell separation.
    Petersson F; Aberg L; Swärd-Nilsson AM; Laurell T
    Anal Chem; 2007 Jul; 79(14):5117-23. PubMed ID: 17569501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel.
    Yamada M; Nakashima M; Seki M
    Anal Chem; 2004 Sep; 76(18):5465-71. PubMed ID: 15362908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional particle separation in coupled acoustic-gravity-flow field vertically by composition and laterally by size.
    Kanazaki T; Okada T
    Anal Chem; 2012 Dec; 84(24):10750-5. PubMed ID: 23186528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fractionation of cell mixtures using acoustic and laminar flow fields.
    Kumar M; Feke DL; Belovich JM
    Biotechnol Bioeng; 2005 Jan; 89(2):129-37. PubMed ID: 15593262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytical scale purification of zirconia colloidal suspension using field programmed sedimentation field flow fractionation.
    Van-Quynh A; Blanchart P; Battu S; Clédat D; Cardot P
    J Chromatogr A; 2006 Mar; 1108(1):90-8. PubMed ID: 16445921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement in separation characteristics of protein precipitates by acoustic conditioning.
    Hoare M; Titchener NJ; Foster PR
    Biotechnol Bioeng; 1987 Jan; 29(1):24-32. PubMed ID: 18561125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-capacity channel designed for particle separation with controlled electric fields and evaluation of involved forces.
    Masudo T; Okada T
    J Chromatogr A; 2006 Feb; 1106(1-2):196-204. PubMed ID: 16443462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustic recognition of counterions in ion-exchange resins.
    Hirawa S; Masudo T; Okada T
    Anal Chem; 2007 Apr; 79(7):3003-7. PubMed ID: 17330960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-chip free-flow magnetophoresis: continuous flow separation of magnetic particles and agglomerates.
    Pamme N; Manz A
    Anal Chem; 2004 Dec; 76(24):7250-6. PubMed ID: 15595866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasonic particle size fractionation in a moving air stream.
    Budwig RS; Anderson MJ; Putnam G; Manning C
    Ultrasonics; 2010 Jan; 50(1):26-31. PubMed ID: 19682719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microparticle separation with an acoustic-gravity field controlled by phase-shift operation.
    Masudo T; Okada T
    Anal Sci; 2007 Apr; 23(4):385-7. PubMed ID: 17420539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous particle separation in a microchannel having asymmetrically arranged multiple branches.
    Takagi J; Yamada M; Yasuda M; Seki M
    Lab Chip; 2005 Jul; 5(7):778-84. PubMed ID: 15970972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stirring and mixing of liquids using acoustic radiation force.
    Sarvazyan A; Ostrovsky L
    J Acoust Soc Am; 2009 Jun; 125(6):3548-54. PubMed ID: 19507936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemiluminescence from singlet oxygen under laminar flow condition in a micro-channel.
    Tsukagoshi K; Fukumoto K; Noda K; Nakajima R; Yamashita K; Maeda H
    Anal Chim Acta; 2006 Jun; 570(2):202-6. PubMed ID: 17723400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW).
    Shi J; Ahmed D; Mao X; Lin SC; Lawit A; Huang TJ
    Lab Chip; 2009 Oct; 9(20):2890-5. PubMed ID: 19789740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.