These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 15171472)
1. Design and transient computational fluid dynamics study of a continuous axial flow ventricular assist device. Song X; Untaroiu A; Wood HG; Allaire PE; Throckmorton AL; Day SW; Olsen DB ASAIO J; 2004; 50(3):215-24. PubMed ID: 15171472 [TBL] [Abstract][Full Text] [Related]
2. Numerical and experimental analysis of an axial flow left ventricular assist device: the influence of the diffuser on overall pump performance. Untaroiu A; Throckmorton AL; Patel SM; Wood HG; Allaire PE; Olsen DB Artif Organs; 2005 Jul; 29(7):581-91. PubMed ID: 15982287 [TBL] [Abstract][Full Text] [Related]
3. Computational Fluid Dynamics (CFD) study of the 4th generation prototype of a continuous flow Ventricular Assist Device (VAD). Song X; Wood HG; Olsen D J Biomech Eng; 2004 Apr; 126(2):180-7. PubMed ID: 15179847 [TBL] [Abstract][Full Text] [Related]
4. Computational design and experimental testing of a novel axial flow LVAD. Untaroiu A; Wood HG; Allaire PE; Throckmorton AL; Day S; Patel SM; Ellman P; Tribble C; Olsen DB ASAIO J; 2005; 51(6):702-10. PubMed ID: 16340354 [TBL] [Abstract][Full Text] [Related]
5. Transient and quasi-steady computational fluid dynamics study of a left ventricular assist device. Song X; Throckmorton AL; Wood HG; Allaire PE; Olsen DB ASAIO J; 2004; 50(5):410-7. PubMed ID: 15497378 [TBL] [Abstract][Full Text] [Related]
6. Steady and transient flow analysis of a magnetically levitated pediatric VAD: time varying boundary conditions. Throckmorton AL; Tahir SA; Lopes SP; Rangus OM; Sciolino MG Int J Artif Organs; 2013 Oct; 36(10):693-9. PubMed ID: 24254838 [TBL] [Abstract][Full Text] [Related]
7. Fluid force predictions and experimental measurements for a magnetically levitated pediatric ventricular assist device. Throckmorton AL; Untaroiu A; Lim DS; Wood HG; Allaire PE Artif Organs; 2007 May; 31(5):359-68. PubMed ID: 17470205 [TBL] [Abstract][Full Text] [Related]
8. Inter-Laboratory Characterization of the Velocity Field in the FDA Blood Pump Model Using Particle Image Velocimetry (PIV). Hariharan P; Aycock KI; Buesen M; Day SW; Good BC; Herbertson LH; Steinseifer U; Manning KB; Craven BA; Malinauskas RA Cardiovasc Eng Technol; 2018 Dec; 9(4):623-640. PubMed ID: 30291585 [TBL] [Abstract][Full Text] [Related]
9. Estimation of changes in dynamic hydraulic force in a magnetically suspended centrifugal blood pump with transient computational fluid dynamics analysis. Masuzawa T; Ohta A; Tanaka N; Qian Y; Tsukiya T J Artif Organs; 2009; 12(3):150-9. PubMed ID: 19894088 [TBL] [Abstract][Full Text] [Related]
10. Systematic Design of a Magnetically Levitated Brushless DC Motor for a Reversible Rotary Intra-Aortic Blood Pump. Wang Y; Logan TG; Smith PA; Hsu PL; Cohn WE; Xu L; McMahon RA Artif Organs; 2017 Oct; 41(10):923-933. PubMed ID: 28929512 [TBL] [Abstract][Full Text] [Related]
11. Detection of left ventricle function from a magnetically levitated impeller behavior. Hoshi H; Asama J; Hara C; Hijikata W; Shinshi T; Shimokohbe A; Takatani S Artif Organs; 2006 May; 30(5):377-83. PubMed ID: 16683956 [TBL] [Abstract][Full Text] [Related]
12. Fluid-structure interaction analysis of a collapsible axial flow blood pump impeller and protective cage for Fontan patients. Hirschhorn M; Bisirri E; Stevens R; Throckmorton AL Artif Organs; 2020 Aug; 44(8):E337-E347. PubMed ID: 32216111 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of the impeller shroud performance of an axial flow ventricular assist device using computational fluid dynamics. Su B; Chua LP; Lim TM; Zhou T Artif Organs; 2010 Sep; 34(9):745-59. PubMed ID: 20883393 [TBL] [Abstract][Full Text] [Related]
15. Channel impeller design for centrifugal blood pump in hybrid pediatric total artificial heart: Modeling, magnet integration, and hydraulic experiments. Hirschhorn M; Catucci N; Day SW; Stevens RM; Tchantchaleishvili V; Throckmorton AL Artif Organs; 2023 Apr; 47(4):680-694. PubMed ID: 36524792 [TBL] [Abstract][Full Text] [Related]
16. Validation of an axial flow blood pump: computational fluid dynamics results using particle image velocimetry. Su B; Chua LP; Wang X Artif Organs; 2012 Apr; 36(4):359-67. PubMed ID: 22040356 [TBL] [Abstract][Full Text] [Related]
17. A new design and computational fluid dynamics study of an implantable axial blood pump. Koochaki M; Niroomand-Oscuii H Australas Phys Eng Sci Med; 2013 Dec; 36(4):417-22. PubMed ID: 24203793 [TBL] [Abstract][Full Text] [Related]
18. Dynamic characteristics of a magnetically levitated impeller in a centrifugal blood pump. Asama J; Shinshi T; Hoshi H; Takatani S; Shimokohbe A Artif Organs; 2007 Apr; 31(4):301-11. PubMed ID: 17437499 [TBL] [Abstract][Full Text] [Related]
19. Shape optimization of the diffuser blade of an axial blood pump by computational fluid dynamics. Zhu L; Zhang X; Yao Z Artif Organs; 2010 Mar; 34(3):185-92. PubMed ID: 20447042 [TBL] [Abstract][Full Text] [Related]
20. Shear-slip Mesh Update Method: implementation and applications. Behr M; Arora D Comput Methods Biomech Biomed Engin; 2003 Apr; 6(2):113-23. PubMed ID: 12745425 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]