BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

585 related articles for article (PubMed ID: 15171589)

  • 21. Sensory stimulation augments the effects of massed practice training in persons with tetraplegia.
    Beekhuizen KS; Field-Fote EC
    Arch Phys Med Rehabil; 2008 Apr; 89(4):602-8. PubMed ID: 18373988
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synergistic control of stimulated pronosupination with the stimulated grasp of persons with tetraplegia.
    Scott TR; Atmore L; Heasman JM; Flynn RY; Vare VA; Gschwind C
    IEEE Trans Neural Syst Rehabil Eng; 2001 Sep; 9(3):258-64. PubMed ID: 11561661
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Challenges to clinical deployment of upper limb neuroprostheses.
    Triolo R; Nathan R; Handa Y; Keith M; Betz RR; Carroll S; Kantor C
    J Rehabil Res Dev; 1996 Apr; 33(2):111-22. PubMed ID: 8724167
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Brain-computer interfaces for control of neuroprostheses: from synchronous to asynchronous mode of operation.
    Müller-Putz GR; Scherer R; Pfurtscheller G; Rupp R
    Biomed Tech (Berl); 2006 Jul; 51(2):57-63. PubMed ID: 16915766
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional evaluation of natural sensory feedback incorporated in a hand grasp neuroprosthesis.
    Inmann A; Haugland M
    Med Eng Phys; 2004 Jul; 26(6):439-47. PubMed ID: 15234680
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hybrid brain-computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury.
    Rohm M; Schneiders M; Müller C; Kreilinger A; Kaiser V; Müller-Putz GR; Rupp R
    Artif Intell Med; 2013 Oct; 59(2):133-42. PubMed ID: 24064256
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Research on the progress of neuroprosthesis for the limb motor system].
    Wan BK; Li J; Ming D
    Zhongguo Yi Liao Qi Xie Za Zhi; 2006 Jul; 30(4):235-40. PubMed ID: 17039925
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modular transcutaneous functional electrical stimulation system.
    Popovic MR; Keller T
    Med Eng Phys; 2005 Jan; 27(1):81-92. PubMed ID: 15604009
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An implanted upper-extremity neuroprosthesis using myoelectric control.
    Kilgore KL; Hoyen HA; Bryden AM; Hart RL; Keith MW; Peckham PH
    J Hand Surg Am; 2008 Apr; 33(4):539-50. PubMed ID: 18406958
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Psychometric rigor of the Grasp and Release Test for measuring functional limitation of persons with tetraplegia: a preliminary analysis.
    Mulcahey MJ; Smith BT; Betz RR
    J Spinal Cord Med; 2004; 27(1):41-6. PubMed ID: 15156936
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A multichannel FES system for the restoration of motor functions in high spinal cord injury patients: a respiration-controlled system for multijoint upper extremity.
    Hoshimiya N; Naito A; Yajima M; Handa Y
    IEEE Trans Biomed Eng; 1989 Jul; 36(7):754-60. PubMed ID: 2787283
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Surgical rehabilitation of upper limb function by tendon transfer in tetraplegia].
    Leclercq C; Lemouel MA; Albert T
    Bull Acad Natl Med; 2005 Jun; 189(6):1151-8. PubMed ID: 16433441
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wireless wearable controller for upper-limb neuroprosthesis.
    Wheeler CA; Peckham PH
    J Rehabil Res Dev; 2009; 46(2):243-56. PubMed ID: 19533538
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interfacing the body's own sensing receptors into neural prosthesis devices.
    Haugland M; Sinkjaer T
    Technol Health Care; 1999; 7(6):393-9. PubMed ID: 10665672
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Review on Functional Electrical Stimulation in Tetraplegic Patients to Restore Hand Function.
    Degnan GG; Wind TC; Jones EV; Edlich R
    J Long Term Eff Med Implants; 2017; 27(2-4):293-306. PubMed ID: 29773045
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Standing after spinal cord injury with four-contact nerve-cuff electrodes for quadriceps stimulation.
    Fisher LE; Miller ME; Bailey SN; Davis JA; Anderson JS; Rhode L; Tyler DJ; Triolo RJ
    IEEE Trans Neural Syst Rehabil Eng; 2008 Oct; 16(5):473-8. PubMed ID: 18990650
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Implementation of natural sensory feedback in a portable control system for a hand grasp neuroprosthesis.
    Inmann A; Haugland M
    Med Eng Phys; 2004 Jul; 26(6):449-58. PubMed ID: 15234681
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Implanted neuroprostheses for restoration of hand function in tetraplegic patients.
    Cornwall R; Hausman MR
    J Am Acad Orthop Surg; 2004; 12(2):72-9. PubMed ID: 15089080
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neuroprostheses for grasping.
    Popovic MR; Popovic DB; Keller T
    Neurol Res; 2002 Jul; 24(5):443-52. PubMed ID: 12117312
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficacy of an implanted neuroprosthesis for restoring hand grasp in tetraplegia: a multicenter study.
    Peckham PH; Keith MW; Kilgore KL; Grill JH; Wuolle KS; Thrope GB; Gorman P; Hobby J; Mulcahey MJ; Carroll S; Hentz VR; Wiegner A;
    Arch Phys Med Rehabil; 2001 Oct; 82(10):1380-8. PubMed ID: 11588741
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.