These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 15172132)

  • 1. Multifactorial interactions involved in linear self-transport distance estimate: a place for time.
    Israël I; Capelli A; Sablé D; Laurent C; Lecoq C; Bredin J
    Int J Psychophysiol; 2004 Jun; 53(1):21-8. PubMed ID: 15172132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vestibular capture of the perceived distance of passive linear self motion.
    Harris LR; Jenkin M; Zikovitz DC
    Arch Ital Biol; 2000 Jan; 138(1):63-72. PubMed ID: 10604034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reproduction of self-rotation duration.
    Israël I; Siegler I; Rivaud-Péchoux S; Gaymard B; Leboucher P; Ehrette M; Berthoz A; Pierrot-Deseilligny C; Flash T
    Neurosci Lett; 2006 Jul; 402(3):244-8. PubMed ID: 16701949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple sensory cues underlying the perception of translation and path.
    Au Yong N; Paige GD; Seidman SH
    J Neurophysiol; 2007 Feb; 97(2):1100-13. PubMed ID: 17122319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absolute travel distance from optic flow.
    Frenz H; Lappe M
    Vision Res; 2005 Jun; 45(13):1679-92. PubMed ID: 15792843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial memory and path integration studied by self-driven passive linear displacement. I. Basic properties.
    Israël I; Grasso R; Georges-Francois P; Tsuzuku T; Berthoz A
    J Neurophysiol; 1997 Jun; 77(6):3180-92. PubMed ID: 9212267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Space-time relativity in self-motion reproduction.
    Glasauer S; Schneider E; Grasso R; Ivanenko YP
    J Neurophysiol; 2007 Jan; 97(1):451-61. PubMed ID: 17050823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-motion perception during conflicting visual-vestibular acceleration.
    Ishida M; Fushiki H; Nishida H; Watanabe Y
    J Vestib Res; 2008; 18(5-6):267-72. PubMed ID: 19542600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microgravity vestibular investigations: perception of self-orientation and self-motion.
    Benson AJ; Guedry FE; Parker DE; Reschke MF
    J Vestib Res; 1997; 7(6):453-7. PubMed ID: 9397395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visuovestibular perception of self-motion modeled as a dynamic optimization process.
    Reymond G; Droulez J; Kemeny A
    Biol Cybern; 2002 Oct; 87(4):301-14. PubMed ID: 12386745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional baselines for perceived self-motion during acceleration and deceleration in a centrifuge.
    Holly JE
    J Vestib Res; 1997; 7(1):45-61. PubMed ID: 9057159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-motion reproduction can be affected by associated auditory cues.
    von Hopffgarten A; Bremmer F
    Seeing Perceiving; 2011; 24(3):203-22. PubMed ID: 21864463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perceived range, perceived velocity, and perceived duration of the body rotating in the frontal plane.
    Higashiyama A; Koga K
    Atten Percept Psychophys; 2009 Jan; 71(1):104-15. PubMed ID: 19304601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Internal models of target motion: expected dynamics overrides measured kinematics in timing manual interceptions.
    Zago M; Bosco G; Maffei V; Iosa M; Ivanenko YP; Lacquaniti F
    J Neurophysiol; 2004 Apr; 91(4):1620-34. PubMed ID: 14627663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-motion magnitude estimation during linear oscillation: changes with head orientation and following fatigue.
    Parker DE; Wood DL; Gulledge WL; Goodrich RL
    Aviat Space Environ Med; 1979 Nov; 50(11):1112-21. PubMed ID: 43123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vertical linear self-motion perception during visual and inertial motion: more than weighted summation of sensory inputs.
    Wright WG; DiZio P; Lackner JR
    J Vestib Res; 2005; 15(4):185-95. PubMed ID: 16286700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Canal and otolith contributions to visual orientation constancy during sinusoidal roll rotation.
    Kaptein RG; Van Gisbergen JA
    J Neurophysiol; 2006 Mar; 95(3):1936-48. PubMed ID: 16319209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relative contributions of radial and laminar optic flow to the perception of linear self-motion.
    Harris LR; Herpers R; Jenkin M; Allison RS; Jenkin H; Kapralos B; Scherfgen D; Felsner S
    J Vis; 2012 Sep; 12(10):7. PubMed ID: 22976397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time course and magnitude of illusory translation perception during off-vertical axis rotation.
    Vingerhoets RA; Medendorp WP; Van Gisbergen JA
    J Neurophysiol; 2006 Mar; 95(3):1571-87. PubMed ID: 16319215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Importance of somatosensory input for spatial orientation in supine subjects: evaluated by pointing arm movements during linear acceleration.
    Chen Y; Mori S
    J Gravit Physiol; 1999 Jul; 6(1):P15-6. PubMed ID: 11542999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.