BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 1517228)

  • 1. FAD-dependent regulation of transcription, translation, post-translational processing, and post-processing stability of various mitochondrial acyl-CoA dehydrogenases and of electron transfer flavoprotein and the site of holoenzyme formation.
    Nagao M; Tanaka K
    J Biol Chem; 1992 Sep; 267(25):17925-32. PubMed ID: 1517228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isoalloxazine ring of FAD is required for the formation of the core in the Hsp60-assisted folding of medium chain acyl-CoA dehydrogenase subunit into the assembly competent conformation in mitochondria.
    Saijo T; Tanaka K
    J Biol Chem; 1995 Jan; 270(4):1899-907. PubMed ID: 7829528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental, nutritional, and hormonal regulation of tissue-specific expression of the genes encoding various acyl-CoA dehydrogenases and alpha-subunit of electron transfer flavoprotein in rat.
    Nagao M; Parimoo B; Tanaka K
    J Biol Chem; 1993 Nov; 268(32):24114-24. PubMed ID: 8226958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of riboflavin deficiency and clofibrate treatment on the five acyl-CoA dehydrogenases in rat liver mitochondria.
    Veitch K; Draye JP; Van Hoof F; Sherratt HS
    Biochem J; 1988 Sep; 254(2):477-81. PubMed ID: 3178769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic defect of medium-chain acyl-coenzyme A dehydrogenase deficiency. Lack of both cofactor responsiveness and biochemical heterogeneity in eight patients.
    Amendt BA; Rhead WJ
    J Clin Invest; 1985 Sep; 76(3):963-9. PubMed ID: 3840178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered acyl-CoA metabolism in riboflavin deficiency.
    Veitch K; Draye JP; Vamecq J; Causey AG; Bartlett K; Sherratt HS; Van Hoof F
    Biochim Biophys Acta; 1989 Dec; 1006(3):335-43. PubMed ID: 2574596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acyl-CoA dehydrogenase activity in the riboflavin-deficient rat. Effects of starvation.
    Ross NS; Hoppel CL
    Biochem J; 1987 Jun; 244(2):387-91. PubMed ID: 3663132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The roles of threonine-136 and glutamate-137 of human medium chain acyl-CoA dehydrogenase in FAD binding and peptide folding using site-directed mutagenesis: creation of an FAD-dependent mutant, T136D.
    Saijo T; Kim JJ; Kuroda Y; Tanaka K
    Arch Biochem Biophys; 1998 Oct; 358(1):49-57. PubMed ID: 9750163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Riboflavin-responsive defects of beta-oxidation.
    Gregersen N
    J Inherit Metab Dis; 1985; 8 Suppl 1():65-9. PubMed ID: 3930843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The functions of the flavin contact residues, alphaArg249 and betaTyr16, in human electron transfer flavoprotein.
    Dwyer TM; Zhang L; Muller M; Marrugo F; Frerman F
    Biochim Biophys Acta; 1999 Aug; 1433(1-2):139-52. PubMed ID: 10446367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification and characterization of the 2-methyl branched-chain Acyl-CoA dehydrogenase, an enzyme involved in NADH-dependent enoyl-CoA reduction in anaerobic mitochondria of the nematode, Ascaris suum.
    Komuniecki R; Fekete S; Thissen-Parra J
    J Biol Chem; 1985 Apr; 260(8):4770-7. PubMed ID: 3988734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular basis of isovaleric acidemia and the study of the acyl-CoA dehydrogenase family.
    Tanaka K; Ikeda Y; Matsubara Y; Hyman D
    Adv Neurol; 1988; 48():107-31. PubMed ID: 3275439
    [No Abstract]   [Full Text] [Related]  

  • 13. Glutaric aciduria type II: evidence for a defect related to the electron transfer flavoprotein or its dehydrogenase.
    Christensen E; Kølvraa S; Gregersen N
    Pediatr Res; 1984 Jul; 18(7):663-7. PubMed ID: 6433313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional structure of the flavoenzyme acyl-CoA oxidase-II from rat liver, the peroxisomal counterpart of mitochondrial acyl-CoA dehydrogenase.
    Nakajima Y; Miyahara I; Hirotsu K; Nishina Y; Shiga K; Setoyama C; Tamaoki H; Miura R
    J Biochem; 2002 Mar; 131(3):365-74. PubMed ID: 11872165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis of four rat liver mitochondrial acyl-CoA dehydrogenases: in vitro synthesis, import into mitochondria, and processing of their precursors in a cell-free system and in cultured cells.
    Ikeda Y; Keese SM; Fenton WA; Tanaka K
    Arch Biochem Biophys; 1987 Feb; 252(2):662-74. PubMed ID: 3813556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Caenorhabditis elegans isovaleryl-CoA dehydrogenase and structural comparison with other acyl-CoA dehydrogenases.
    Mohsen AW; Navarette B; Vockley J
    Mol Genet Metab; 2001 Jun; 73(2):126-37. PubMed ID: 11386848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organic aciduria in the riboflavin-deficient rat.
    Goodman SI
    Am J Clin Nutr; 1981 Nov; 34(11):2434-7. PubMed ID: 6895440
    [No Abstract]   [Full Text] [Related]  

  • 18. Mitochondrial import and processing of wild type and type III mutant isovaleryl-CoA dehydrogenase.
    Volchenboum SL; Vockley J
    J Biol Chem; 2000 Mar; 275(11):7958-63. PubMed ID: 10713113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on electron transfer from general acyl-CoA dehydrogenase to electron transfer flavoprotein.
    Hall CL; Lambeth JD
    J Biol Chem; 1980 Apr; 255(8):3591-5. PubMed ID: 7364759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Riboflavin deficiency in cultured rat hepatoma cells: a model for studying the hepatic effects of riboflavin deficiency.
    Ross NS; Klein MR
    In Vitro Cell Dev Biol; 1990 Mar; 26(3 Pt 1):280-4. PubMed ID: 2318792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.