These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 15172283)
1. Comparison of low-flow cardiopulmonary bypass and circulatory arrest on brain oxygen and metabolism. Schultz S; Creed J; Schears G; Zaitseva T; Greeley W; Wilson DF; Pastuszko A Ann Thorac Surg; 2004 Jun; 77(6):2138-43. PubMed ID: 15172283 [TBL] [Abstract][Full Text] [Related]
2. Selective cerebral perfusion: real-time evidence of brain oxygen and energy metabolism preservation. Salazar JD; Coleman RD; Griffith S; McNeil JD; Steigelman M; Young H; Hensler B; Dixon P; Calhoon J; Serrano F; DiGeronimo R Ann Thorac Surg; 2009 Jul; 88(1):162-9. PubMed ID: 19559218 [TBL] [Abstract][Full Text] [Related]
3. Brain oxygen and metabolism is dependent on the rate of low-flow cardiopulmonary bypass following circulatory arrest in newborn piglets. Pastuszko P; Liu H; Mendoza-Paredes A; Schultz SE; Markowitz SD; Greeley WJ; Wilson DF; Pastuszko A Eur J Cardiothorac Surg; 2007 May; 31(5):899-905. PubMed ID: 17336082 [TBL] [Abstract][Full Text] [Related]
5. Brain oxygen and metabolism during circulatory arrest with intermittent brief periods of low-flow cardiopulmonary bypass in newborn piglets. Schultz S; Antoni D; Shears G; Markowitz S; Pastuszko P; Greeley W; Wilson DF; Pastuszko A J Thorac Cardiovasc Surg; 2006 Oct; 132(4):839-44. PubMed ID: 17000295 [TBL] [Abstract][Full Text] [Related]
6. Regulation of brain cell death and survival after cardiopulmonary bypass. Zaitseva T; Schultz S; Schears G; Pastuszko P; Markowitz S; Greeley W; Wilson DF; Pastuszko A Ann Thorac Surg; 2006 Dec; 82(6):2247-53. PubMed ID: 17126142 [TBL] [Abstract][Full Text] [Related]
7. Nitric oxide production affects cerebral perfusion and metabolism after deep hypothermic circulatory arrest. Tsui SS; Kirshbom PM; Davies MJ; Jacobs MT; Greeley WJ; Kern FH; Gaynor JW; Ungerleider RM Ann Thorac Surg; 1996 Jun; 61(6):1699-707. PubMed ID: 8651770 [TBL] [Abstract][Full Text] [Related]
8. Deep hypothermic circulatory arrest and global reperfusion injury: avoidance by making a pump prime reperfusate--a new concept. Allen BS; Veluz JS; Buckberg GD; Aeberhard E; Ignarro LJ J Thorac Cardiovasc Surg; 2003 Mar; 125(3):625-32. PubMed ID: 12658205 [TBL] [Abstract][Full Text] [Related]
9. Recovery of cerebral blood flow and energy state in piglets after hypothermic circulatory arrest versus recovery after low-flow bypass. Kawata H; Fackler JC; Aoki M; Tsuji MK; Sawatari K; Offutt M; Hickey PR; Holtzman D; Jonas RA J Thorac Cardiovasc Surg; 1993 Oct; 106(4):671-85. PubMed ID: 8412262 [TBL] [Abstract][Full Text] [Related]
11. Better protection of pulmonary surfactant integrity with deep hypothermia and circulatory arrest. Yang Y; Cai J; Wang S; Zhang H; Liu J; Xu Z; Su Z Ann Thorac Surg; 2006 Jul; 82(1):131-6; discussion 136-7. PubMed ID: 16798203 [TBL] [Abstract][Full Text] [Related]
12. Brain oxygenation and metabolism during selective cerebral perfusion in neonates. Schears G; Zaitseva T; Schultz S; Greeley W; Antoni D; Wilson DF; Pastuszko A Eur J Cardiothorac Surg; 2006 Feb; 29(2):168-74. PubMed ID: 16376567 [TBL] [Abstract][Full Text] [Related]
13. Proteomics of cerebral injury in a neonatal model of cardiopulmonary bypass with deep hypothermic circulatory arrest. Sheikh AM; Barrett C; Villamizar N; Alzate O; Miller S; Shelburne J; Lodge A; Lawson J; Jaggers J J Thorac Cardiovasc Surg; 2006 Oct; 132(4):820-8. PubMed ID: 17000293 [TBL] [Abstract][Full Text] [Related]
14. Response of brain oxygenation and metabolism to deep hypothermic circulatory arrest in newborn piglets: comparison of pH-stat and alpha-stat strategies. Markowitz SD; Mendoza-Paredes A; Liu H; Pastuszko P; Schultz SP; Schears GJ; Greeley WJ; Wilson DF; Pastuszko A Ann Thorac Surg; 2007 Jul; 84(1):170-6. PubMed ID: 17588406 [TBL] [Abstract][Full Text] [Related]
15. Visual light spectroscopy reflects flow-related changes in brain oxygenation during regional low-flow perfusion and deep hypothermic circulatory arrest. Amir G; Ramamoorthy C; Riemer RK; Davis CR; Hanley FL; Reddy VM J Thorac Cardiovasc Surg; 2006 Dec; 132(6):1307-13. PubMed ID: 17140947 [TBL] [Abstract][Full Text] [Related]
16. Intermittent whole-body perfusion with "somatoplegia' versus blood perfusate to extend duration of circulatory arrest. Miura T; Laussen P; Lidov HG; DuPlessis A; Shin'oka T; Jonas RA Circulation; 1996 Nov; 94(9 Suppl):II56-62. PubMed ID: 8901720 [TBL] [Abstract][Full Text] [Related]
17. High-volume continuous hemofiltration during cardiopulmonary bypass attenuates pulmonary dysfunction in neonatal lambs after deep hypothermic circulatory arrest. Nagashima M; Shin'oka T; Nollert G; Shum-Tim D; Rader CM; Mayer JE Circulation; 1998 Nov; 98(19 Suppl):II378-84. PubMed ID: 9852930 [TBL] [Abstract][Full Text] [Related]
18. Cerebral oxygen monitoring during neonatal cardiopulmonary bypass and deep hypothermic circulatory arrest. Abdul-Khaliq H; Troitzsch D; Schubert S; Wehsack A; Böttcher W; Gutsch E; Hübler M; Hetzer R; Lange PE Thorac Cardiovasc Surg; 2002 Apr; 50(2):77-81. PubMed ID: 11981706 [TBL] [Abstract][Full Text] [Related]
19. Comparison of neurologic outcome after deep hypothermic circulatory arrest with alpha-stat and pH-stat cardiopulmonary bypass in newborn pigs. Priestley MA; Golden JA; O'Hara IB; McCann J; Kurth CD J Thorac Cardiovasc Surg; 2001 Feb; 121(2):336-43. PubMed ID: 11174740 [TBL] [Abstract][Full Text] [Related]
20. Cerebral activation of mitogen-activated protein kinases after circulatory arrest and low flow cardiopulmonary bypass. Aharon AS; Mulloy MR; Drinkwater DC; Lao OB; Johnson MD; Thunder M; Yu C; Chang P Eur J Cardiothorac Surg; 2004 Nov; 26(5):912-9. PubMed ID: 15519182 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]