BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 15172497)

  • 1. Modification of fibrous poly(L-lactic acid) scaffolds with self-assembling triblock molecules.
    Stendahl JC; Li L; Claussen RC; Stupp SI
    Biomaterials; 2004 Dec; 25(27):5847-56. PubMed ID: 15172497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface modification of poly(D,L-lactic acid) scaffolds for orthopedic applications: a biocompatible, nondestructive route via diazonium chemistry.
    Mahjoubi H; Kinsella JM; Murshed M; Cerruti M
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):9975-87. PubMed ID: 24965034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembled supramolecular polymers with tailorable properties that enhance cell attachment and proliferation.
    Cheng CC; Lee DJ; Chen JK
    Acta Biomater; 2017 Mar; 50():476-483. PubMed ID: 28003144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications.
    Li WJ; Cooper JA; Mauck RL; Tuan RS
    Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates.
    Badami AS; Kreke MR; Thompson MS; Riffle JS; Goldstein AS
    Biomaterials; 2006 Feb; 27(4):596-606. PubMed ID: 16023716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel wet extrusion technique to fabricate self-assembled microfiber scaffolds for controlled drug delivery.
    Lavin DM; Harrison MW; Tee LY; Wei KA; Mathiowitz E
    J Biomed Mater Res A; 2012 Oct; 100(10):2793-802. PubMed ID: 22623283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of mechanical and biological properties of porous CaSiO3 scaffolds by poly(D,L-lactic acid) modification.
    Wu C; Ramaswamy Y; Boughton P; Zreiqat H
    Acta Biomater; 2008 Mar; 4(2):343-53. PubMed ID: 17921076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembling biomaterials: liquid crystal phases of cholesteryl oligo(L-lactic acid) and their interactions with cells.
    Hwang JJ; Iyer SN; Li LS; Claussen R; Harrington DA; Stupp SI
    Proc Natl Acad Sci U S A; 2002 Jul; 99(15):9662-7. PubMed ID: 12119419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteoblast adhesion on poly(L-lactic acid)/polystyrene demixed thin film blends: effect of nanotopography, surface chemistry, and wettability.
    Lim JY; Hansen JC; Siedlecki CA; Hengstebeck RW; Cheng J; Winograd N; Donahue HJ
    Biomacromolecules; 2005; 6(6):3319-27. PubMed ID: 16283761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micropatterning proteins and cells on polylactic acid and poly(lactide-co-glycolide).
    Lin CC; Co CC; Ho CC
    Biomaterials; 2005 Jun; 26(17):3655-62. PubMed ID: 15621256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts.
    Park K; Ju YM; Son JS; Ahn KD; Han DK
    J Biomater Sci Polym Ed; 2007; 18(4):369-82. PubMed ID: 17540114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface engineering of poly(D,L-lactic acid) by entrapment of soluble eggshell membrane protein.
    Lu JW; Li Q; Qi QL; Guo ZX; Yu J
    J Biomed Mater Res A; 2009 Dec; 91(3):701-7. PubMed ID: 19048638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and surface modification of macroporous poly(L-lactic acid) and poly(L-lactic-co-glycolic acid) (70/30) cell scaffolds for human skin fibroblast cell culture.
    Yang J; Shi G; Bei J; Wang S; Cao Y; Shang Q; Yang G; Wang W
    J Biomed Mater Res; 2002 Dec; 62(3):438-46. PubMed ID: 12209930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elaboration and surface modification of structured poly(L-lactic acid) thin film on various substrates.
    Poncin-Epaillard F; Shavdina O; Debarnot D
    Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2526-33. PubMed ID: 23623064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro and in vivo degradability and cytocompatibility of poly(l-lactic acid) scaffold fabricated by a gelatin particle leaching method.
    Gong Y; Zhou Q; Gao C; Shen J
    Acta Biomater; 2007 Jul; 3(4):531-40. PubMed ID: 17350355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of three-dimensional porous scaffolds of complicated shape for tissue engineering. I. Compression molding based on flexible-rigid combined mold.
    Wu L; Zhang H; Zhang J; Ding J
    Tissue Eng; 2005; 11(7-8):1105-14. PubMed ID: 16144446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of fibroblast cells on poly(lactide-co-glycolide) surface with wettability chemogradient.
    Khang G; Lee SJ; Lee JH; Kim YS; Lee HB
    Biomed Mater Eng; 1999; 9(3):179-87. PubMed ID: 10572622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porous and dense poly(L-lactic acid) and poly(D,L-lactic acid-co-glycolic acid) scaffolds: in vitro degradation in culture medium and osteoblasts culture.
    Barbanti SH; Santos AR; Zavaglia CA; Duek EA
    J Mater Sci Mater Med; 2004 Dec; 15(12):1315-21. PubMed ID: 15747184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homogeneous chitosan-PLGA composite fibrous scaffolds for tissue regeneration.
    Shim IK; Lee SY; Park YJ; Lee MC; Lee SH; Lee JY; Lee SJ
    J Biomed Mater Res A; 2008 Jan; 84(1):247-55. PubMed ID: 17607738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards a methodology for the effective surface modification of porous polymer scaffolds.
    Safinia L; Datan N; Höhse M; Mantalaris A; Bismarck A
    Biomaterials; 2005 Dec; 26(36):7537-47. PubMed ID: 16009420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.