BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 15172722)

  • 1. Evaluation of 14C abundance in soil respiration using acclerator mass spectrometry.
    Koarashi J; Iida T; Moriizumi J; Asano T
    J Environ Radioact; 2004; 75(2):117-32. PubMed ID: 15172722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Depth profiles of radiocarbon and carbon isotopic compositions of organic matter and CO2 in a forest soil.
    Liu W; Moriizumi J; Yamazawa H; Iida T
    J Environ Radioact; 2006; 90(3):210-23. PubMed ID: 16952413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the use of delta(13)C natural abundance in separation of root and microbial respiration in a Danish beech (Fagus sylvatica L.) forest.
    Formánek P; Ambus P
    Rapid Commun Mass Spectrom; 2004; 18(8):897-902. PubMed ID: 15095359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of 14CO2 flux at soil-atmosphere interface and distribution of 14C in forest ecosystem.
    Koarashi J; Amano H; Andoh M; Iida T; Moriizumi J
    J Environ Radioact; 2002; 60(3):249-61. PubMed ID: 12054039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring the 13C content of soil-respired CO2 using a novel open chamber system.
    Midwood AJ; Thornton B; Millard P
    Rapid Commun Mass Spectrom; 2008 Jul; 22(13):2073-81. PubMed ID: 18521825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid turnover of DOC in temperate forests accounts for increased CO2 production at elevated temperatures.
    Bengtson P; Bengtsson G
    Ecol Lett; 2007 Sep; 10(9):783-90. PubMed ID: 17663711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiocarbon and stable carbon isotope compositions of chemically fractionated soil organic matter in a temperate-zone forest.
    Koarashi J; Iida T; Asano T
    J Environ Radioact; 2005; 79(2):137-56. PubMed ID: 15603904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A field and laboratory method for monitoring the concentration and isotopic composition of soil CO2.
    Breecker D; Sharp ZD
    Rapid Commun Mass Spectrom; 2008; 22(4):449-54. PubMed ID: 18186546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling environmental controls on ecosystem photosynthesis and the carbon isotope composition of ecosystem-respired CO2 in a coastal Douglas-fir forest.
    Cai T; Flanagan LB; Jassal RS; Black TA
    Plant Cell Environ; 2008 Apr; 31(4):435-53. PubMed ID: 18182019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Process-oriented dose assessment model for 14C due to releases during normal operation of a nuclear power plant.
    Aquilonius K; Hallberg B
    J Environ Radioact; 2005; 82(3):267-83. PubMed ID: 15885375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rising atmospheric CO2 reduces sequestration of root-derived soil carbon.
    Heath J; Ayres E; Possell M; Bardgett RD; Black HI; Grant H; Ineson P; Kerstiens G
    Science; 2005 Sep; 309(5741):1711-3. PubMed ID: 16151007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing in situ mineralization of recalcitrant organic compounds in vadose zone sediments using delta13C and 14C measurements.
    Kirtland BC; Aelion CM; Stone PA
    J Contam Hydrol; 2005 Jan; 76(1-2):1-18. PubMed ID: 15588571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fractional contributions by autotrophic and heterotrophic respiration to soil-surface CO2 efflux in Boreal forests.
    Högberg P; Nordgren A; Högberg MN; Ottosson-Löfvenius M; Bhupinderpal-Singh ; Olsson P; Linder S
    SEB Exp Biol Ser; 2005; ():251-67. PubMed ID: 17633039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of elevated atmospheric CO2 concentrations on soil microorganisms.
    Freeman C; Kim SY; Lee SH; Kang H
    J Microbiol; 2004 Dec; 42(4):267-77. PubMed ID: 15650682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variations of anthropogenic CO2 in urban area deduced by radiocarbon concentration in modern tree rings.
    Rakowski AZ; Nakamura T; Pazdur A
    J Environ Radioact; 2008 Oct; 99(10):1558-65. PubMed ID: 18272268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of trichloroacetic acid in environmental studies using carbon 14 and chlorine 36.
    Matucha M; Rohlenová J; Forczek ST; Uhlírová H; Gryndler M; Fuksová K; Schröder P
    Chemosphere; 2006 Jun; 63(11):1924-32. PubMed ID: 16313943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soil resource availability impacts microbial response to organic carbon and inorganic nitrogen inputs.
    Zhang WJ; Zhu W; Hu S
    J Environ Sci (China); 2005; 17(5):705-10. PubMed ID: 16312988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental risk assessment of airborne trichloroacetic acid--a contribution to the discussion on the significance of anthropogenic and natural sources.
    Ahlers J; Regelmann J; Riedhammer C
    Chemosphere; 2003 Jul; 52(2):531-7. PubMed ID: 12738278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The carbon isotope composition of CO2 respired by trunks: comparison of four sampling methods.
    Damesin C; Barbaroux C; Berveiller D; Lelarge C; Chaves M; Maguas C; Maia R; Pontailler JY
    Rapid Commun Mass Spectrom; 2005; 19(3):369-74. PubMed ID: 15645507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon-isotopic composition of soil-respired carbon dioxide in static closed chambers at equilibrium.
    Mora G; Raich JW
    Rapid Commun Mass Spectrom; 2007; 21(12):1866-70. PubMed ID: 17510940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.