These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 15172722)

  • 1. Evaluation of 14C abundance in soil respiration using acclerator mass spectrometry.
    Koarashi J; Iida T; Moriizumi J; Asano T
    J Environ Radioact; 2004; 75(2):117-32. PubMed ID: 15172722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Depth profiles of radiocarbon and carbon isotopic compositions of organic matter and CO2 in a forest soil.
    Liu W; Moriizumi J; Yamazawa H; Iida T
    J Environ Radioact; 2006; 90(3):210-23. PubMed ID: 16952413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the use of delta(13)C natural abundance in separation of root and microbial respiration in a Danish beech (Fagus sylvatica L.) forest.
    Formánek P; Ambus P
    Rapid Commun Mass Spectrom; 2004; 18(8):897-902. PubMed ID: 15095359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of 14CO2 flux at soil-atmosphere interface and distribution of 14C in forest ecosystem.
    Koarashi J; Amano H; Andoh M; Iida T; Moriizumi J
    J Environ Radioact; 2002; 60(3):249-61. PubMed ID: 12054039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring the 13C content of soil-respired CO2 using a novel open chamber system.
    Midwood AJ; Thornton B; Millard P
    Rapid Commun Mass Spectrom; 2008 Jul; 22(13):2073-81. PubMed ID: 18521825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid turnover of DOC in temperate forests accounts for increased CO2 production at elevated temperatures.
    Bengtson P; Bengtsson G
    Ecol Lett; 2007 Sep; 10(9):783-90. PubMed ID: 17663711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiocarbon and stable carbon isotope compositions of chemically fractionated soil organic matter in a temperate-zone forest.
    Koarashi J; Iida T; Asano T
    J Environ Radioact; 2005; 79(2):137-56. PubMed ID: 15603904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A field and laboratory method for monitoring the concentration and isotopic composition of soil CO2.
    Breecker D; Sharp ZD
    Rapid Commun Mass Spectrom; 2008; 22(4):449-54. PubMed ID: 18186546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling environmental controls on ecosystem photosynthesis and the carbon isotope composition of ecosystem-respired CO2 in a coastal Douglas-fir forest.
    Cai T; Flanagan LB; Jassal RS; Black TA
    Plant Cell Environ; 2008 Apr; 31(4):435-53. PubMed ID: 18182019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Process-oriented dose assessment model for 14C due to releases during normal operation of a nuclear power plant.
    Aquilonius K; Hallberg B
    J Environ Radioact; 2005; 82(3):267-83. PubMed ID: 15885375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rising atmospheric CO2 reduces sequestration of root-derived soil carbon.
    Heath J; Ayres E; Possell M; Bardgett RD; Black HI; Grant H; Ineson P; Kerstiens G
    Science; 2005 Sep; 309(5741):1711-3. PubMed ID: 16151007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing in situ mineralization of recalcitrant organic compounds in vadose zone sediments using delta13C and 14C measurements.
    Kirtland BC; Aelion CM; Stone PA
    J Contam Hydrol; 2005 Jan; 76(1-2):1-18. PubMed ID: 15588571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fractional contributions by autotrophic and heterotrophic respiration to soil-surface CO2 efflux in Boreal forests.
    Högberg P; Nordgren A; Högberg MN; Ottosson-Löfvenius M; Bhupinderpal-Singh ; Olsson P; Linder S
    SEB Exp Biol Ser; 2005; ():251-67. PubMed ID: 17633039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of elevated atmospheric CO2 concentrations on soil microorganisms.
    Freeman C; Kim SY; Lee SH; Kang H
    J Microbiol; 2004 Dec; 42(4):267-77. PubMed ID: 15650682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variations of anthropogenic CO2 in urban area deduced by radiocarbon concentration in modern tree rings.
    Rakowski AZ; Nakamura T; Pazdur A
    J Environ Radioact; 2008 Oct; 99(10):1558-65. PubMed ID: 18272268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of trichloroacetic acid in environmental studies using carbon 14 and chlorine 36.
    Matucha M; Rohlenová J; Forczek ST; Uhlírová H; Gryndler M; Fuksová K; Schröder P
    Chemosphere; 2006 Jun; 63(11):1924-32. PubMed ID: 16313943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soil resource availability impacts microbial response to organic carbon and inorganic nitrogen inputs.
    Zhang WJ; Zhu W; Hu S
    J Environ Sci (China); 2005; 17(5):705-10. PubMed ID: 16312988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental risk assessment of airborne trichloroacetic acid--a contribution to the discussion on the significance of anthropogenic and natural sources.
    Ahlers J; Regelmann J; Riedhammer C
    Chemosphere; 2003 Jul; 52(2):531-7. PubMed ID: 12738278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The carbon isotope composition of CO2 respired by trunks: comparison of four sampling methods.
    Damesin C; Barbaroux C; Berveiller D; Lelarge C; Chaves M; Maguas C; Maia R; Pontailler JY
    Rapid Commun Mass Spectrom; 2005; 19(3):369-74. PubMed ID: 15645507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon-isotopic composition of soil-respired carbon dioxide in static closed chambers at equilibrium.
    Mora G; Raich JW
    Rapid Commun Mass Spectrom; 2007; 21(12):1866-70. PubMed ID: 17510940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.