BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 1517393)

  • 1. A morphometric analysis of craniofacial growth in cleft lip and noncleft mice.
    Wang KY; Diewert VM
    J Craniofac Genet Dev Biol; 1992; 12(3):141-54. PubMed ID: 1517393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deficient and delayed primary palatal fusion and mesenchymal bridge formation in cleft lip-liable strains of mice.
    Wang KY; Juriloff DM; Diewert VM
    J Craniofac Genet Dev Biol; 1995; 15(3):99-116. PubMed ID: 8642057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative morphometrics of embryonic facial morphogenesis: implications for cleft-lip etiology.
    Young NM; Wat S; Diewert VM; Browder LW; Hallgrímsson B
    Anat Rec (Hoboken); 2007 Jan; 290(1):123-39. PubMed ID: 17441205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study of development during primary palate formation in A/WySn, C57BL/6, and their F1 crosses.
    Ciriani D; Diewert VM
    J Craniofac Genet Dev Biol; 1986; 6(4):369-77. PubMed ID: 3793861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphological observations in normal primary palate and cleft lip embryos in the Kyoto collection.
    Diewert VM; Shiota K
    Teratology; 1990 Jun; 41(6):663-77. PubMed ID: 2353315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth and morphogenesis of the human embryonic midface during primary palate formation analyzed in frontal sections.
    Diewert VM; Lozanoff S
    J Craniofac Genet Dev Biol; 1993; 13(3):162-83. PubMed ID: 8227289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study of craniofacial growth during secondary palate development in four strains of mice.
    Diewert VM
    J Craniofac Genet Dev Biol; 1982; 2(4):247-63. PubMed ID: 7183704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced epithelial surface activity is related to a higher incidence of facial clefting in A/WySn mice.
    Forbes DP; Steffek AJ; Klepacki M
    J Craniofac Genet Dev Biol; 1989; 9(3):271-83. PubMed ID: 2613861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitotic index in mouse embryos with 6-aminonicotinamide-induced and inherited cleft lip.
    Trasler DG; Leong S
    Teratology; 1982 Apr; 25(2):259-65. PubMed ID: 7101202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer reconstructions of human embryonic craniofacial morphology showing changes in relations between the face and brain during primary palate formation.
    Diewert VM; Lozanoff S; Choy V
    J Craniofac Genet Dev Biol; 1993; 13(3):193-201. PubMed ID: 8227291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental alterations associated with spontaneous cleft lip and palate in CL/Fr mice.
    Millicovsky G; Ambrose LJ; Johnston MC
    Am J Anat; 1982 May; 164(1):29-44. PubMed ID: 7102571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Test of the hypothesis that embryonic face shape is a causal factor in genetic predisposition to cleft lip in mice.
    Juriloff DM; Trasler DG
    Teratology; 1976 Aug; 14(1):35-41. PubMed ID: 960009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of phenytoin on Satb2 and Hoxa2 gene expressions in mouse embryonic craniofacial tissue.
    Mao XY; Tang SJ
    Biochem Cell Biol; 2010 Aug; 88(4):731-5. PubMed ID: 20651846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Locally released retinoic acid leads to facial clefts in the chick embryo but does not alter the expression of receptors for fibroblast growth factor.
    Richman JM; Delgado JL
    J Craniofac Genet Dev Biol; 1995; 15(4):190-204. PubMed ID: 8719348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Animal models for human craniofacial malformations.
    Johnston MC; Bronsky PT
    J Craniofac Genet Dev Biol; 1991; 11(4):277-91. PubMed ID: 1812129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigations of the genomic region that contains the clf1 mutation, a causal gene in multifactorial cleft lip and palate in mice.
    Juriloff DM; Harris MJ; Dewell SL; Brown CJ; Mager DL; Gagnier L; Mah DG
    Birth Defects Res A Clin Mol Teratol; 2005 Feb; 73(2):103-13. PubMed ID: 15690355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A morphometric analysis of craniofacial growth and changes in spatial relations during secondary palatal development in human embryos and fetuses.
    Diewert VM
    Am J Anat; 1983 Aug; 167(4):495-522. PubMed ID: 6624691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Craniofacial variability in parents of children with cleft lip and cleft palate.
    AlEmran SE; Fatani E; Hassanain JE
    J Clin Pediatr Dent; 1999; 23(4):337-41. PubMed ID: 10551135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrastructure of initial nasal process cell fusion in spontaneous and 6-aminonicotinamide-induced mouse embryo cleft lip.
    Trasler DG; Ohannessian L
    Teratology; 1983 Aug; 28(1):91-101. PubMed ID: 6227102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mouse palatal width growth rates as an "at risk" factor in the development of cleft palate induced by hypervitaminosis A.
    Vergato LA; Doerfler RJ; Mooney MP; Siegel MI
    J Craniofac Genet Dev Biol; 1997; 17(4):204-10. PubMed ID: 9493079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.